
University of Genova
PhD Program in Bioengineering and Robotics

Online Control of
Humanoid Robot Locomotion

by

Giulio Romualdi

Thesis submitted for the degree of Doctor of Philosophy (34◦ cycle)

August 2022

Daniele Pucci Supervisor
Stefano Dafarra Co-Advisor
Giorgio Cannata Head of the PhD program

Thesis Jury and Reviewers∗:
Marco Hutter∗ Prof. Dr., ETH, Zürich, Switzerland
Jerry Pratt∗ Senior Research Scientist, IHMC, Pensacola, Florida
Johannes Englsberger Dr. Ing., DLR, Oberpfaffenhofen, Germany
Alexander Leonessa Prof. Dr., Virginia Tech, Blacksburg, Virginia
Giorgio Cannata Prof., Università degli Studi di Genova, Genoa, Italy
Lorenzo Rosasco Prof., Università degli Studi di Genova, Genoa, Italy

2

To my beloved family

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

Giulio Romualdi
August 2022

Acknowledgements

If I have seen further it is by
standing on the shoulders of Giants.

Isaac Newton

I would like to express my deepest appreciation to my supervisor, Daniele Pucci,
for believing in me and for giving me the opportunity to conduct my research in the
Artificial and Mechanical Intelligence laboratory. His guidance and advice have allowed
me to grow more and more every day.

I am extremely grateful to Stefano Dafarra for all the time he spent discussing the
research topics that are presented in this thesis.

I could never reach the end of my Ph.D. without Silvio. I sincerely appreciate all
of your time and work in advising me on several subjects. Every day, I am struck by
your unwavering drive to assist all members of the community.

Olivier Stasse deserves special recognition for welcoming me to the Gepetto team
in Toulouse. Thank you Olivier for giving me this wonderful opportunity.

I cannot thank Nahuel enough. I thoroughly enjoyed every minute of our discussion.
My sincere gratitude goes to the reviewers, Marco Hutter and Jerry Pratt, for

taking the time to read and review my thesis. I must thank Lorenzo Natale, Marco
Maggiali, Ugo Pattacini, Vadim Tikhanoff, Luca Fiorio, and Alberto Parmigiani for
their insightful comments during my Ph.D. research evaluations.

Words cannot explain how grateful I am to everyone on the Baciotti team. Thank
you, Giuseppe, Ines, Paolo, Riccardo, and Antonello for proving to be real friends. I
never expected to meet folks like you.

A special thank goes to Prashanth! We embarked on this journey together and,
unexpectedly, we survived. Thank you for all our chats! I have always admired your
approach to research and you have always been an inspiration to me.

iv

It is now Nicola’s turn. Thank you for being my favorite housemate and adventure
buddy. This thesis would not have been possible without your consistent encouragement
to improve.

I would also like to thank all the guys and girls from LAAS, especially Gabriele,
Gianluca, Fanny, and Côme. You made me feel at home even if I was abroad.

Thanks should also go to current and past members of our lab: Yue, Carlotta,
Claudia, Gianluca, Gabriele, Yeshasvi, Hosam, Lorenzo, Cisco, Punith, Fabio B., Diego,
Kourosh, Raffaello, Gabriele, Italo, Affaf, Enrico, Tong, Milad, Anqing, Prajval, Venus,
Valentino, Ahmad and Mohamed, with whom I have shared many unforgivable and
great experiences.

I am sincerely thankful for the administrative support from Marta Caracalli, Lucia
Betrò, and Valentina Scanarotti.

Thank you for everything, Olivia, the sole genuine love of my life. Thank you for
always being with me. Without you, I would be lost.

Special thanks also go to Stefano and Carmine, old friends who are living evidence
that real friendship can transcend enormous distances.

Grazie Mamma, Babbo ed Eli. Non esistono parole per esprimere la mia gratitudine
per tutto quello che avete fatto e che costantemente fate. Sarete per sempre una fonte
di ispirazione che mi guiderà ogni giorno per il resto della mia vita.

Giulio

Abstract

The complexity of robot dynamics and contact model are only a few of the challenges
that increase the online threat to the locomotion problem. During the DARPA
Robotics Challenge, a typical strategy to solve the humanoid movement challenge was
to construct hierarchical systems made of numerous layers linked in cascade. Each layer
computes its output taking into account the information received from the outer layer,
the environment, the robot data, and a specific model of the robot and its interaction
with the environment.

This thesis investigates several model-based controllers for time-critical humanoid
robot motion control. Taking into account the layered control architecture, we vary
the control models in a crescendo of complexity. Having in mind the importance of
designing an online architecture for locomotion, we suggest a framework composed
of three layers. The inner layer takes into account the entire robot model, whether
kinematic or dynamic. The intermediate and outer layers take into account simpler or
reduced models.

Given the inner layer, we first develop a controller that takes into account the entire
rigid robot dynamical model in the situation of rigid contact with the environment.
Second, we remove the rigid contact assumption and design a controller that accounts
for compliant walking surfaces. Finally, we eliminate the rigid body hypothesis in
some of the robot linkages and propose a controller that takes into account the robot’s
mechanical flexibility.

Considering the outer layers, we first describe a controller that assumes the robot
behaves as a simplified model. Then, we seek to eliminate these simplifications while
keeping the problem manageable online, by designing a controller that considers only a
subset of the robot dynamics.

The proposed strategies are tested on real and simulated humanoid robots: the
iCub and the TALOS humanoid robots.

Table of contents

List of figures xii

List of tables xvi

Prologue 1

I Background & Fundamentals 11

1 Introduction 12
1.1 The iCub Humanoid Robot . 14

1.1.1 The iCub v2.7 robot . 16
1.1.2 The iCub v3 robot . 17
1.1.3 Software infrastructure . 18

1.2 The TALOS Humanoid Robot . 19
1.3 Notation . 21

2 Rigid Body System Modeling 23
2.1 The Rotation group . 23

2.1.1 Angular velocity . 24
2.1.2 Exponential and Logarithmic map 25
2.1.3 The adjoint representation . 26

2.2 The Euclidean group . 27
2.2.1 6D spatial velocity . 27
2.2.2 6D spatial force . 29
2.2.3 Exponential and Logarithmic map 31
2.2.4 The adjoint representation . 32
2.2.5 The co-adjoint representation 33

Table of contents vii

2.2.6 The adjoint representation of se(3) 33
2.2.7 The co-adjoint representation of se(3) 34
2.2.8 Mixed spatial velocity . 34
2.2.9 Mixed spatial force . 35

2.3 Rigid body dynamics . 36
2.4 The rotation and euclidean groups: a Lie groups prospective 37

3 Modeling of Floating Base Multi-Body Systems 39
3.1 Floating base multi-body system modeling 39
3.2 Multi-body kinematics . 44
3.3 Multi-body dynamics . 48
3.4 Centroidal dynamics . 50

4 Simplified Models for Locomotion 52
4.1 The linear inverted pendulum . 53
4.2 The zero moment point . 56

4.2.1 Connection between the ZMP and the centroidal momentum
dynamics . 57

4.3 The centroidal moment pivot . 58
4.4 The divergent component of motion . 59

4.4.1 Connection between the DCM and the LIPM 62
4.5 The time-varying DCM . 62

5 Optimal Control and Non-Linear Optimization Basics 65
5.1 Convex set . 66

5.1.1 Affine and convex sets . 66
5.1.2 Convex set examples . 67

5.2 Convex function . 71
5.2.1 First and second order conditions for the convexity 72

5.3 Optimization problem . 73
5.3.1 The optimality conditions for unconstrained problems 75
5.3.2 Lagrange duality theory . 76
5.3.3 Karush-Kuhn-Tucker Conditions 79

5.4 Quadratic Programming . 79
5.5 Optimal control . 81

5.5.1 Direct methods . 83

Table of contents viii

5.5.2 Shooting methods . 86
5.6 Model predictive control . 88

6 State of the Art and Thesis Context 91
6.1 State of the Art . 91

6.1.1 Trajectory optimization layer 92
6.1.2 Simplified model control layer 95
6.1.3 Whole-Body control layer . 96

6.2 Thesis Context . 98
6.2.1 Part II: Whole-Body Controllers 99
6.2.2 Part III: From Simplified to Reduced Models Controllers 100

II Whole-Body Controllers 102

7 Benchmarking of Whole-Body Controllers for Locomotion on Rigid
Environment 103
7.1 Kinematics based whole-body QP control layer 104

7.1.1 Low and high priority tasks . 105
7.1.2 Quadratic programming problem 108
7.1.3 Position and velocity controlled robot 109

7.2 Dynamics-based whole-body QP control layer 110
7.2.1 Low and high priority tasks . 110
7.2.2 Quadratic programming problem 116

7.3 Experimental results . 117
7.3.1 Tracking performances . 118
7.3.2 Energy consumption . 122

7.4 Conclusion . 123

8 Whole-Body Controller on Visco Elastic Environment 125
8.1 Modeling of visco-elastic environments 126

8.1.1 Linear approximation of the visco-elastic model 129
8.2 Whole-body controller . 131

8.2.1 Low and high priority tasks . 132
8.2.2 Quadratic programming problem 135
8.2.3 Contact parameters estimation 135

8.3 Results . 138

Table of contents ix

8.3.1 Comparison between TSID-Compliant and TSID-Rigid 138
8.3.2 Robustness of the TSID-Compliant 143
8.3.3 Anisotropic environment . 144

8.4 Conclusions . 144

9 Whole-Body Control of Humanoid Robots with Link Flexibility 146
9.1 System modeling . 147

9.1.1 Model of the hip flexibility . 147
9.1.2 Modeling of a floating base system with flexible joints 148

9.2 Whole-body Controller . 150
9.2.1 Low and high priority tasks . 150
9.2.2 Quadratic programming problem 153

9.3 Flexible Joint State Observer . 154
9.3.1 Forward kinematics . 157
9.3.2 Inverse dynamics propagation 158
9.3.3 Flexible joint state estimation 159

9.4 Results . 161
9.4.1 Comparison between TSID-Flex and TSID-Rigid 162
9.4.2 Performances of the TSID-Flex in the case of different stiffness

parameters . 165
9.5 Conclusions . 169

III From Simplified to Reduced Models Controllers 170

10 Benchmarking of Simplified-Model Controllers for Locomotion 171
10.1 Background . 172

10.1.1 The unicycle model . 173
10.1.2 Footsteps trajectory planner 175
10.1.3 DCM trajectory generator . 176

10.2 Simplified model architecture . 179
10.2.1 The DCM trajectory planner . 180
10.2.2 Swing Foot Trajectory . 182
10.2.3 Simplified model control layer 186

10.3 Results . 189
10.3.1 Experiment 1: a forward robot speed of 0.1563 m s-1 191

Table of contents x

10.3.2 Experiment 2: a forward robot speed of 0.3372 m s-1 193
10.4 Conclusions . 194

11 Non-Linear Centroidal Model Predictive Controller 196
11.1 Centroidal model predictive controller 197

11.1.1 Prediction model . 198
11.1.2 Objective function . 200
11.1.3 Inequality constraints . 201
11.1.4 MPC formulation . 203

11.2 Results . 204
11.2.1 Reduced models simulation . 205
11.2.2 Test on the iCub Humanoid Robot 206

11.3 Conclusions . 208

Epilogue 210

References 213

Appendix A Lie Group: a Survival Kit 231
A.1 Matrix Lie Group . 231
A.2 Action of a Lie Group . 233
A.3 Tangent space and Lie algebra . 233
A.4 Co-tangent space and Lie co-algebra 234
A.5 Left and right trivialization . 236
A.6 Exponential and logarithmic map . 237
A.7 The adjoint and the co-adjoint representation of a Lie group 237
A.8 The adjoint and the co-adjoint representation of the Lie algebra 240
A.9 Eurel-Poincaré equations . 243

Appendix B Proof of Lemma 1 244
B.1 Compliant contact force computation 246
B.2 Compliant contact torque computation 247

Appendix C Proof of Corollary 1 250

Appendix D Optimal Trajectory Planning in Rn 254
D.1 Notes on Hamilton’s Variational Principle 254

Table of contents xi

D.2 Minimum acceleration trajectory in Rn 257
D.3 Minimum jerk trajectory in Rn . 259

Appendix E Optimal Trajectory Planning in SO(3) 261
E.1 Hamilton’s Variational Principle in SO(3) 261
E.2 Minimum acceleration trajectory in SO(3) 265

List of figures

1.1 Art and robotics . 13
1.2 WABOT-1 and Unimate . 14
1.3 The two versions of the iCub humanoid robot. 15
1.4 FT and IMU distribution on iCub v2.7 15
1.5 The iCub3 robot side to side to the classical iCub v2.7. 17
1.6 TALOS humanoid robot . 19
1.7 Kinematics of Pyrène robot . 20
1.8 Structure of TALOS actuator . 20

2.1 Spatial velocity of a rigid-body. 30
2.2 Spatial force of a rigid-body. 31

3.1 Schematic representation of a multi-body structure. 41
3.2 Geometric model of a rigid-body system. 43

4.1 The linear inverted pendulum model. 53
4.2 Relation between CMP and ZMP. 58

5.1 Examples of convex and nonconvex sets 67
5.2 Examples of polyhedra . 69
5.3 A hyperplane and the associated halfspaces 70
5.4 Examples of convex and nonconvex functions 72
5.5 Graphic representation of an optimization problem 74
5.6 Solution of a QP problem . 80
5.7 Single and Multiple shooting . 86
5.8 Receding horizon principle. 90

6.1 The three layer controller architecture 92

List of figures xiii

7.1 The three layer controller architecture for bipedal locomotion in rigid
environment . 104

7.2 Tracking of the left foot position using Whole-body QP control as
inverse kinematics. (a) Straight velocity 0.1563 m s−1. (b) Straight
velocity 0.3372 m s−1. 119

7.3 Tracking of the left foot position using Whole-body QP control as
velocity control. (a) Straight velocity 0.1563 m s−1. (b) Straight velocity
0.3372 m s−1. 119

7.4 Tracking of the CoM (a), and left foot position (b) with whole-body QP
control as torque control. 121

7.5 Tracking of the desired joint torques of the left leg. 122
7.6 Instantaneous simplified controller and whole-body controller tracking

(simulation) . 123
7.7 Predictive simplified controller and whole-body controller tracking (sim-

ulation) . 124

8.1 The visco-elastic model: a 2D representation. 127
8.2 Vector field generated by the visco-elastic model 129
8.3 Linear approximation error for different values of yaw angle. 131
8.4 Controller architecture. 136
8.5 A simulation of the iCub robot walks with the TSID-Compliant controller.139
8.6 Comparison between TSID-Rigid and TSID-Compliant. 140
8.7 Comparison between TSID-Rigid and TSID-Compliant. At t ≈ 1.75 s,

the TSID-Rigid makes the robot fall down. 141
8.8 Comparison between TSID-Rigid and TSID-Compliant. At t ≈ 0.9 s,

the TSID-Rigid makes the robot fall down. 141
8.9 Linear momentum tracking for different values of σ. At t ≈ 4 s and

σ = 20 the robot fall down. 142
8.10 Estimation of the contact parameters. The contact wrench is perturbed

with zero-mean Gaussian noise with σ = 5. 142

9.1 Schematic representation of the flexible TALOS leg. 154
9.2 Geometric model of the flexible TALOS leg. 155
9.3 Flexible joint controller architecture. 160
9.4 A simulation of the TALOS robot walks with the TSID-Flex controller 161
9.5 Zoom of the flexible joints motion. 162

List of figures xiv

9.6 CoM tracking: comparison between TSID-Rigid and TSID-Flex. 163
9.7 Angular momentum tracking: comparison between TSID-Rigid and

TSID-Flex. 164
9.8 Foot tracking: comparison between TSID-Rigid and TSID-Flex. 164
9.9 CoM tracking: comparison between TSID-Rigid and TSID-Flex. 165
9.10 Angular momentum tracking: comparison between TSID-Rigid and

TSID-Flex. 166
9.11 Foot tracking: comparison between TSID-Rigid and TSID-Flex. 166
9.12 CoM Tracking. 167
9.13 Flexible joint state estimation error. 168

10.1 The three layer controller architecture for bipedal locomotion in rigid
environment . 172

10.2 Unicycle model. 173
10.3 Footsteps planning from the unicycle trajectory. 175
10.4 DCM trajectory planning assuming single support phases only 177
10.5 DCM trajectory planning . 180
10.6 DCM trajectory planner at the first and last step 181
10.7 Final step DCM trajectory w.r.t. αLS 182
10.8 The iCub robot walks with the 3 layer controller architecture of Figure 10.1.189
10.9 Tracking of the DCM (a), CoM (b) and ZMP (c) using the instantaneous

controller with the whole-body controller as position control. Walking
velocity: 0.19 m s−1. 191

10.10Tracking of the DCM (a), CoM (b) and ZMP (c) using the MPC and the
whole-body controller as position control. Walking velocity: 0.19 m s−1. 192

10.11Tracking of the DCM (a), CoM (b) and ZMP (c) with the instantaneous
and whole-body QP control as position. Walking velocity: 0.41 m s−1. . 193

10.12Tracking of the DCM (a), CoM (b) and ZMP (c) with the predictive
and whole-body QP control as position control. At t ≈ 2 s, the robot
falls down. Walking velocity: 0.41 m s−1. 194

11.1 Centroidal MPC embedded into a three layer controller architecture . . 197
11.2 The contact feasibility region. 202
11.3 (a)-(b) Trajectories generated by the MPC on a one-leg robot performing

a jumping task. (c) Desired contact forces. 204

List of figures xv

11.4 (a)-(b) Trajectories generated by the MPC on a two-legs robot perform-
ing a running task. (c) Desired contact forces. 205

11.5 The iCub humanoids robot react to an external disturbance. 206
11.6 (a)-(b) Trajectories generated by the three-layer controller architecture

on the iCub robot. (c) Computation time. 208

A.1 Lie group and the corresponding Lie algebra as tangent space at identity.232
A.2 The Adjoint representation. 238

List of tables

7.1 Maximum forward walking velocities achieved in simulation and in a
real scenario in case of a torque-controlled robot. 120

7.2 Specific Energetic Cost evaluated in simulation and in a real scenario in
case of torque and position controlled robot. 123

8.1 Outcomes of whole-body controllers implementation on compliant terrain
walking. 139

9.1 Controllers outcome in the case of different joint stiffness parameter k . 162

10.1 Maximum forward straight walking velocities achieved using different
implementations of the control architecture. 190

Prologue

When the Czech writer Karel Čapek coined the term robot in 1920, he had no idea
that a century later robots would be a fundamental component of modern civilization.
Čapek’s conception of robots, however, was quite different than ours. Čapek’s robots
were artificially assembled biological organisms that may be confused with humans.
They were designed to free mankind from the shackles of physical fatigue. Nowadays,
the word robot refers to mechanical artificial devices capable of completing tasks,
whether ordinary or extraordinary. The robots were initially developed on a large
commercial scale by Unimation, starting from 1960, to reduce human labor along the
assembly lines. One decade later, the Waseda University presented the first humanoid
robot. Its name is WABOT-1. Although initially, robots’ objective was to replace
unskilled labor in assembly lines, nowadays robots are designed also to assist humans
in their everyday tasks. In the future, robotics will enable a human being to have a
real-time sensation of being in a place, and being able to interact with the remote
environment. This idea is often known as telexistence. Thanks to telexistence, a
robot might instantaneously provide the sensation of human presence and care to
anybody, regardless of distance. A robot, or rather a physical avatar, might deliver
essential life-saving abilities in real-time to remote, disaster-stricken locations too
hazardous for a worker. To promote the use of robots in disaster scenarios, in 2015,
the US Defense Advanced Research Projects Agency funded the DARPA Robotics
Challenge (DRC) where humanoid robots had to perform several tasks in a nuclear
crisis scenario. The tasks to be completed included things like driving a utility vehicle,
walking through a door, and manipulating a tool to cut a hole in a wall. Many of
the biped robots fell during the testing, highlighting the technology’s immaturity.
On March 12, 2018, All Nippon Airways (ANA), Japan’s largest airline, announced
the $10M ANA Avatar XPRIZE. The competition aims to create an avatar system
that can transport human presence to a remote location in real-time. In this context,
online walking capabilities are pivotal. Moreover, when cooperating with a human, the

Prologue 2

robot must guarantee a safe interaction while maintaining balance. As a consequence,
researchers are driven to design accurate models of the physical interaction between the
robot and its surroundings, attempting to make the problem of locomotion tractable
online.

One of the most important inheritances that DRC left us with was the definition of
a model-based hierarchical control architecture for humanoid robot locomotion. Each
layer provides references for the inner layer by processing inputs from the robot, the
environment, and the outputs of the outer layer while considering the robot’s model.
Assumptions and simplifications may be necessary to maintain the locomotion problem
tractable online, at the risk of compromising the model’s descriptiveness. As a result,
the humanoid robot’s behavior varies depending on which model is considered at each
layer of the control architecture.

In this thesis, we investigate different model-based controllers for time-critical
humanoid robot motion control. Considering the above hierarchical control architecture,
we vary the considered models from simplified to complete dynamics depending on
the desired task. In particular, considering the importance of designing an online
architecture for locomotion, we propose a control architecture composed of three layers.
From top to bottom, we denote these layers as: trajectory optimization, simplified model
control, and whole-body control. We study the performance of the simplified model
control and whole-body control layers when the models under consideration change.
Indeed, we believe that various tasks may be performed while preserving a cascade
control structure and modifying the models considered in the specific layer. We show
that the locomotion task in different scenarios can be accomplished while keeping the
cascade control structure and changing the models considered in the specific layers.

This thesis is divided into three parts and its structure reflects the cascade archi-
tecture.

Part I: Background & Fundamentals

This part introduces a background about the concepts exploited in the thesis

• Chapter 1 introduces the content of the thesis, along with some food for thought
on art and literature. It also briefly introduces the underlying technologies used
to implement the algorithms presented in this thesis.

• Chapter 2 introduces the rotation and the roto-translation groups. We also
present the dynamics of a rigid body system.

Prologue 3

• Chapter 3 presents the model of a floating base multi body system.

• Chapter 4 describes the simplified model considered to describe the locomotion
of a bipedal robot.

• Chapter 5 gives the reader some notion about optimal control and non-linear
optimization.

• Chapter 6 provides the literature review and defines the thesis context.

Part II: Whole-Body Controllers

In this part, we present the design of three whole-body controllers for humanoid robot
locomotion.

• Chapter 7 compares whole-body controllers for locomotion on rigid surfaces. A
kinematics-based and a dynamics-based whole-body controllers are proposed.
The former considers the robot’s kinematics to generate the desired joint positions
or velocities. The latter, on the other hand, is based on the full dynamics of the
robot. Due to the modularity of the two controllers, the two approaches may be
interchanged depending on the low-level controller currently accessible on the
robot. The experiments are performed on the Humanoid Robot iCub.

• Chapter 8 attempts to loosen the stiff contact assumption introduced in Chapter 7
and it contributes towards the modeling of compliant contacts for robot motion
control. The chapter, more specifically, proposes a contact model that describes
the mechanical characteristics of a visco-elastic carpet. The whole-body controller
then exploits the model to compute viable joint torques, allowing the robot to
accomplish a locomotion task. The architecture is validated in a simulated version
of the Humanoid Robot iCub.

• Chapter 9 proposes an extension of the dynamics-based whole-body controller,
presented in Chapter 7, in the case of a robot affected by inner link flexibility.
We model the link flexibility as a passive under-actuated joints and consider
their dynamics in the whole-body control layer. The approach is validated on
the simulated torque-controlled Humanoid Robot TALOS.

Prologue 4

Part III: From Simplified to Reduced Models Controllers

This part discusses the design of the trajectories and the simplified model control
layers. Starting from simplified models’ assumptions, we decided to move towards
reduce-models to compute, online, the desired trajectories for the whole-body control
layer.

• Chapter 10 presents and compares several simplified model-based implementations
of the kinematic-based controller architecture. In particular, given a desired
footsteps location and timing, the simplified model control layer implements two
controllers for the tracking of the robot’s center of mass: an instantaneous and a
predictive controller. We compare the two control strategies on the Humanoid
Robot iCub. Moreover, we show that one of the proposed implementations allows
the iCub robot to reach the highest walking velocity ever achieved on such a
robot.

• Chapter 11 discusses the design of a non-linear Model Predictive Controller (MPC)
that aims at generating online feasible contact locations and forces for humanoid
robot locomotion. More precisely, we moved from the simplified models exploited
in Chapter 10 to a reduced description of the humanoid robot. Thanks to this
choice, we consider the contact location adjustment directly in the dynamics
stabilization problem. The proposed approach is validated on the new version of
the iCub Humanoid Robot.

This research work has been carried out during my tenure as Ph.D. candidate in the
Artificial and Mechanical Intelligence laboratory at the Istituto Italiano di Tecnologia in
Genoa, Italy. My Ph.D. secondment has been carried out at the Gepetto laboratory at
LAAS-CNRS Laboratory for Analysis and Architecture of Systems in Toulouse, France.
The doctoral program has been carried out in accordance with the requirements of
University of Genoa, Italy in order to obtain a Ph.D. title.

Summary of publications

The results of the research conducted for this thesis have been (or will be) published
in peer-reviewed research publications. We also include additional material, such as a
video presentation and a software repository, for each published paper.

The content of Chapter 7 and Chapter 10 appears in:

Prologue 5

Romualdi, G., Dafarra, S., Hu, Y., and Pucci, D. (2018). A Benchmarking
of DCM Based Architectures for Position and Velocity Controlled Walking
of Humanoid Robots. In 2018 IEEE-RAS 18th International Conference
on Humanoid Robots (Humanoids), pages 1–9. IEEE

Romualdi, G., Dafarra, S., Hu, Y., Ramadoss, P., Chavez, F. J. A.,
Traversaro, S., and Pucci, D. (2020). A Benchmarking of DCM-Based
Architectures for Position, Velocity and Torque-Controlled Humanoid
Robots. International Journal of Humanoid Robotics, 17(01):1950034

Video https://www.youtube.com/watch?v=FIqwAO71Fc4
GitHub robotology/walking-controllers

The content of Chapter 8 appears in:

Romualdi, G., Dafarra, S., and Pucci, D. (2021). Modeling of Visco-
Elastic Environments for Humanoid Robot Motion Control. IEEE
Robotics and Automation Letters, 6(3):4289–4296

Video https://www.youtube.com/watch?v=7XKQ5ZWJvYU
GitHub ami-iit/romualdi-2021-ral-soft_terrain_walking

The content of Chapter 9 will eventually appear in:

Romualdi, G., Villa, N., Dafarra, S., Pucci, D., and Stasse, O. (2022b).
Control and Estimation of Link Flexibility for Humanoid Robot Motion
Control. IEEE-RAS International Conference on Humanoid Robots
(Humanoids) (Submitted)

The content of Chapter 11 appears in:

https://www.youtube.com/watch?v=FIqwAO71Fc4
https://github.com/robotology/walking-controllers
https://www.youtube.com/watch?v=7XKQ5ZWJvYU
https://github.com/ami-iit/romualdi-2021-ral-soft_terrain_walking

Prologue 6

Romualdi, G., Dafarra, S., L’Erario, G., Sorrentino, I., Traversaro, S.,
and Pucci, D. (2022a). Online Non-linear Centroidal MPC for Humanoid
Robot Locomotion with Step Adjustment. In 2022 International Confer-
ence on Robotics and Automation (ICRA), pages 10412–10419. IEEE

Video https://www.youtube.com/watch?v=u7vCgE2w_vY9
GitHub ami-iit/paper_romualdi_2022_icra_centroidal-

mpc-walking

Aside from publications directly relevant to the main contribution of this thesis, we
now list additional contributions closely related to the thesis research aim.

The following manuscript presents a computationally efficient method for online
planning of bipedal walking trajectories with push recovery based on Simplified Models
for locomotion. I have contributed to this dissemination by developing part of the
push recovery algorithm and integrating it with the walking architecture described
in [Romualdi et al., 2020].

Shafiee, M., Romualdi, G., Dafarra, S., Chavez, F. J. A., and Pucci, D.
(2019). Online dcm trajectory generation for push recovery of torque-
controlled humanoid robots. IEEE-RAS International Conference on
Humanoid Robots, 2019-October:671–678

Video https://www.youtube.com/watch?v=DyNG8S6zznI

The following paper presents a framework for the teleoperation of humanoid robots
using a novel approach for motion retargeting through inverse kinematics over the
robot model. The proposed method enhances scalability for retargeting, i.e., it allows
teleoperating different robots by different human users with minimal changes to the
proposed system. My contribution towards this publication was concerned with the
development of an interface on the walking controller to handle the information
computed by the retargeting application. Furthermore, I supported the first author in
the experimental procedures for the proposed architectures.

https://www.youtube.com/watch?v=u7vCgE2w_vY9
https://github.com/ami-iit/paper_romualdi_2022_icra_centroidal-mpc-walking
https://github.com/ami-iit/paper_romualdi_2022_icra_centroidal-mpc-walking
https://www.youtube.com/watch?v=DyNG8S6zznI

Prologue 7

Darvish, K., Tirupachuri, Y., Romualdi, G., Rapetti, L., Ferigo, D.,
Chavez, F. J. A., and Pucci, D. (2019). Whole-Body Geometric Retar-
geting for Humanoid Robots. In 2019 IEEE-RAS 19th International
Conference on Humanoid Robots (Humanoids), pages 679–686. IEEE

Video https://www.youtube.com/watch?v=yELyMYkCyNE
GitHub robotology/walking-teleoperation

The journal publication mentioned below proposes an architecture for achieving
telexistence and teleoperation of humanoid robots. The architecture combines several
technological set-ups, methodologies, locomotion, and manipulation algorithms in a
novel manner, thus building upon and extending works available in the literature. I
have contributed to this dissemination by aiding the first author with the validation,
software testing, and experimental analysis of the proposed architecture.

Elobaid, M., Hu, Y., Romualdi, G., Dafarra, S., Babic, J., and Pucci, D.
(2020a). Telexistence and Teleoperation for Walking Humanoid Robots.
pages 1106–1121

Video https://www.youtube.com/watch?v=jemGKRxdAM8

The following conference paper introduces a planner capable of generating walking
trajectories using the centroidal dynamics and the full kinematics of a humanoid
robot model. The interaction between the robot and the walking surface is modeled
explicitly through a novel contact parametrization. I supported the first author in the
experimental procedures for the proposed architectures.

Dafarra, S., Romualdi, G., Metta, G., and Pucci, D. (2020). Whole-
Body Walking Generation using Contact Parametrization: A Non-Linear
Trajectory Optimization Approach. Proceedings - IEEE International
Conference on Robotics and Automation, pages 1511–1517

GitHub ami-iit/dynamical-planner

https://www.youtube.com/watch?v=yELyMYkCyNE
https://github.com/robotology/walking-teleoperation
https://www.youtube.com/watch?v=jemGKRxdAM8
https://github.com/ami-iit/dynamical-planner

Prologue 8

The conference publication mentioned in the following presents a contact-aided
inertial-kinematic floating-base estimation for humanoid robots considering an evolution
of the state and observations over matrix Lie groups. I supported the first author in
the experimental validation of the proposed estimator.

Ramadoss, P., Romualdi, G., Dafarra, S., Andrade Chavez, F. J., Traver-
saro, S., and Pucci, D. (2021). DILIGENT-KIO: A Proprioceptive Base
Estimator for Humanoid Robots using Extended Kalman Filtering on
Matrix Lie Groups. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 2904–2910. IEEE

Video https://www.youtube.com/watch?v=CaEZvbR9ZcA
GitHub ami-iit/paper_ramadoss_2021_icra_proprioceptive-

base-estimator

The following journal manuscript presents ADHERENT, a system architecture
that integrates machine learning methods used in computer graphics with whole-body
control methods employed in robotics to generate and stabilize human-like trajectories
for humanoid robots. My contribution towards this dissemination was concerned with
the development of the whole-body controllers to stabilize the trajectories provided
by the machine learning algorithm. Furthermore, I supported the first author in the
experimental procedures for the proposed architectures.

Viceconte, P. M., Camoriano, R., Romualdi, G., Ferigo, D., Dafarra,
S., Traversaro, S., Oriolo, G., Rosasco, L., and Pucci, D. (2022). AD-
HERENT: Learning Human-like Trajectory Generators for Whole-body
Control of Humanoid Robots. IEEE Robotics and Automation Letters,
7(2):2779–2786

Video https://www.youtube.com/watch?v=s7-pML0ojK8
GitHub ami-iit/paper_viceconte_2021_ral_adherent

The following journal paper presents a planner to generate walking trajectories by
using the centroidal dynamics and the full kinematics of a humanoid robot. The paper

https://www.youtube.com/watch?v=CaEZvbR9ZcA
https://github.com/ami-iit/paper_ramadoss_2021_icra_proprioceptive-base-estimator
https://github.com/ami-iit/paper_ramadoss_2021_icra_proprioceptive-base-estimator
https://www.youtube.com/watch?v=s7-pML0ojK8
https://github.com/ami-iit/paper_viceconte_2021_ral_adherent

Prologue 9

extends and encompasses the authors’ previous work [Dafarra et al., 2020]. Indeed,
the introduced contact parametrization [Dafarra et al., 2020] is now considered as a
dynamic complementary condition (DCC) and compared with other state-of-the-art
methods. I supported the first author in the experimental validation for the proposed
architectures.

Dafarra, S., Romualdi, G., and Pucci, D. (2022). Dynamic Complemen-
tary Conditions and Whole-Body Trajectory Optimization for Humanoid
Robot Locomotion. IEEE Transactions on Robotics

GitHub ami-iit/paper_dafarra_2022_tro_dcc-planner

Code developed during the Ph.D.

The results of the research conducted for this thesis have been obtained thanks to a
suit of libraries I developed and I am maintaining.

osqp-eigen is a simple Eigen wrapper for the osqp library [Stellato et al., 2018a].
The goal of osqp-eigen is to make it easier to describe a quadratic programming (QP)
problem in C++. The library is open-source released under the BSD-3-Clause license
and it is available at https://github.com/robotology/osqp-eigen.

lie-group-controllers is a header-only C++ library containing controllers designed
for Lie groups. The aim of the library is to hide the complexity of the design of a
proportional and proportional and derivative controller for a general Lie group. For
this reason the controllers implemented in lie-group-controllers are not restricted
to SO(3) and SE(3). The library is open-source released under the LGPL-2.1 license
and it is available at https://github.com/ami-iit/lie-group-controllers.

bipedal-locomotion-framework is a suite of libraries to achieve bipedal locomotion
in humanoid robots. Many of the algorithms and the models presented in Part II and
III have been implemented within this framework. bipedal-locomotion-framework
implements also an efficient floating base inverse kinematics and dynamics. The project
provides also python bindings. The content of the bipedal-locomotion-framework

https://github.com/ami-iit/paper_dafarra_2022_tro_dcc-planner
https://github.com/robotology/osqp-eigen
https://github.com/ami-iit/lie-group-controllers

Prologue 10

library is the subject of a publication to be submitted. The library is open-source
released under the BSD-3-Clause license and it is available at https://github.com/
ami-iit/bipedal-locomotion-framework.

https://github.com/ami-iit/bipedal-locomotion-framework
https://github.com/ami-iit/bipedal-locomotion-framework

Part I

Background & Fundamentals

Chapter 1

Introduction

Humans have been fascinated by the possibility of replicating their images into an
artificial system since ancient Greece. Some Greek myths, for example, tell of artificial
entities who aid, through extraordinary actions, the men in combat. According to a
legend, the hero Cadmus (Κάδμος), after founding Thebes, planted dragon teeth, which
became artificial soldiers – Figure 1.1a. Another noteworthy example can be found in
the Argonautica (Ἀργοναυτικά), a poem written by Apollonius of Rhodes (Ἀπολλώνιος
῾Ρόδιος). The author narrates the myth of Talos (Τάλως), an invulnerable artificial
giant made of bronze. According to the myth, Talos was in charge to guard Crete
against pirates and invaders and did not hesitate to plunge himself into the flames
and heat it up to a very high degree before crashing into and burning his foes. These
synthetic beings were not just employed in war; in fact, examples of a companion
automaton may be found in Latin literature. In this regard, Pūblius Ovidius Nāsō,
known as Ovid, writes about the myth of Pygmalion who fell in love with a statue,
Galatea, he had crafted with his own hands – Figure 1.1b. In response to his prayers,
the goddess Aphrodite brought Galatea to life.

It takes a long time to go from folklore to a documented project of an autonomous
system. Given that the first one dates around 1495 when Leonardo da Vinci designed
the mechanical knight, known as Leonardo’s robot. The project was probably based on
Leonardo’s concept of the ideal human body proportions represented in the Virtuvian
Man drawing. The first working android was built only about three centuries later
by Jacques de Vaucanson in 1738. Jacques de Vaucanson’s work can be seen as a
bridge from an age in which artificial creatures were exclusively restricted to legends or
projects, to another in which the ideal of developing artificial mechanical systems had
become a reality. This was noticed by the Italian writer Ippolito Nevio who states in

Introduction 13

(a) (b)

Figure 1.1 (a) Jacob Jordaens (1593–1678) - Cadmus and Minerva (date not known).
(b) Jean Raoux (1677-1734) – Pygmalion adoring his statue (1717).

Storia Filosofica dei Secoli Futuri that the invention of automata is the most important
goal reached in the history of mankind.

The term robot was coined by the Czech writer Karel Čapek, who used it for the
first time in his play The Universal Robots of Rossum to characterize an artificial
worker. The worldwide success of Čapek’s play helped the term robot to gain a vogue.
Nowadays, the word robot has been incorporated into practically every language.

It is interesting to note that robots have had a human aspect since antiquity;
yet, the first contemporary robots were used in industries and were not humanoid.
The first industrial robot, unimate (Figure 1.2b), was constructed in 1959, while the
first machine capable of human-like walking arrived only 14 years later in 1973. Its
name was WABOT-1 (WAseda roBOT) [Takanishi, 2019] – Figure 1.2a. WABOT-1
weighs around 130 kg and is powered by 11 hydraulically driven joints. Walking is
accomplished by segmenting the motion and storing the associated joint references in
the robot’s computer. An analog circuit attempts to match the reference joint position
with the one measured by a potentiometer. Despite more than five decades since the
first walking humanoid robot, bipedal locomotion remains an open problem. The
complexity of the robot dynamics, the unpredictability of its surrounding environment,
and the low efficiency of the robot actuation system are only a few problems that
complexify the achievement of robust robot locomotion. As a result, to cope with the
difficulty, researchers were driven to design simpler models [Englsberger et al., 2011;
Kajita et al., 2001; Pratt et al., 2006; Vukobratović et al., 2004] that are only valid

Introduction 14

(a) WABOT-1 (b) Unimate

Figure 1.2 (a) The WABOT1 humanoid robot (image from www.humanoid.
waseda.ac.jp/booklet/kato_2.html). (b) A picture of the Unimate robot (image
taken from https://latestnews.plus/the-film-like-story-of-the-first-real-
robot-unimate-in-history/).

under strict assumptions. In this context, the definition of a hierarchical architecture
composed of several layers was a common approach to achieve online humanoid robot
control during the DARPA Robotics Challenge [Spenko et al., 2018]. In this context,
each layer assumes a particular robot model, and it provides the references for the
inner layer by processing the inputs from the robot, the environment, and the outputs
of the outer layer.

This thesis explores the hierarchical control architecture and focuses on various
model-based controllers for time-critical humanoid robot motion control. Depending
on the desired objective, we vary the considered models from simplified to complete
robot dynamics.

In Sections 1.1 and 1.2, we briefly describe the technological resources used for the
experimental validation of the thesis developments: iCub and TALOS humanoid robots.
Section 1.3 introduces the notation used in the thesis

1.1 The iCub Humanoid Robot

The iCub Humanoid Robot is an open source state-of-the-art robotic platform created
as part of the European project RobotCub [Metta et al., 2010; Natale et al., 2017;
Parmiggiani et al., 2012; Tsagarakis et al., 2007] at the Italian Institute of Technology.

www.humanoid.waseda.ac.jp/booklet/kato_2.html
www.humanoid.waseda.ac.jp/booklet/kato_2.html
https://latestnews.plus/the-film-like-story-of-the-first-real-robot-unimate-in-history/
https://latestnews.plus/the-film-like-story-of-the-first-real-robot-unimate-in-history/

Introduction 15

(a) The iCub v2.7 robot (b) The iCub v3 robot

Figure 1.3 The two versions of the iCub humanoid robot.

(a) Distribution of the six-axis force-torque (b) Distribution of the inertial sensors

Figure 1.4 Distribution of the six embedded six-axis force-torque sensors (a) and of
the inertial sensors (b) on iCub v2.7.

Introduction 16

The iCub has been regularly updated with upgrades and new features since its first
release in 2006. More than 40 partnering institutions in Europe, Asia, and the United
States have received copies of iCub.

Because innovations are constantly issued and integrated into the many iCubs,
all robot copies have distinct features based on their release date, the maintenance
upgrades conducted over the years, and the individual customization of each iCub.
The algorithms discussed in the thesis have been tested on two versions of the iCub
robots, namely iCub v2.7 and iCub v3. Section 1.1.1 presents the characteristics of
iCub v2.7, while Section 1.1.2 introduces iCub v3.

1.1.1 The iCub v2.7 robot

Figure 1.3a depicts the iCub humanoid robot v2.7, which is 104 cm tall and weighs
33 kg. It has 54 degrees of freedom in total, including those in the hands and eyes.
Only 23 joints are used for locomotion and are distributed as follows: 4 joints in the
arm, 3 of which in the shoulder and one in the elbow, 3 joints in the torso, and 6 joints
in each leg. The torso and shoulder joints are mechanically coupled and driven by
tendon mechanisms. All 23 joints are powered by brushless electric motors equipped
with Harmonic Drive transmissions with a reduction ratio of 1/100.

A series of electronic boards known as 2FOC, EMS, and MC4Plus operate the iCub
motors. The 2FOC boards use an incremental optical encoder positioned on the motor
shaft to regulate the magnetic flux of a brushless motor by setting a reference PWM
(Pulse Width Modulation). The EMS boards, on the other hand, are linked to the
2FOC boards and implement three control strategies, namely position, velocity, and
torque control. The electronic boards are connected through an Ethernet network in
daisy chain.

A three-degree-of-freedom accelerometer and three-degree-of-freedom gyroscopes
are included on each motor control board. In addition, the robot’s head is equipped
with a full-fledged Inertial Measurement Unit, which includes a 3 DOF magnetometer,
accelerometer, and gyroscope. Figure 1.4b shows how these designs offer the iCub v2.7
with a large amount of distributed inertial sensing, which has been exploited for precise
calibration in [Guedelha et al., 2016].

Differently from other state-of-the-art robots [Englsberger et al., 2015b; Stasse
et al., 2017], the iCub humanoid robot v2.7 does not mount pure torque sensors on
the joints. As a consequence, the internal joint torques cannot be directly measured.
However the robot is equipped with 6 inertial six-axis force-torque sensors - Figure 1.4a.

Introduction 17

Figure 1.5 The iCub3 robot side to side to the classical iCub v2.7.

Four of them are attached to the base of each limb, while two are mounted on the
robot’s ankles. The location of these sensors enables the estimation of internal joint
torques and external force-torque, as described in [Fumagalli et al., 2012] for a single
limb and in [Traversaro, 2017, Chapter 4] for the whole-body case.

Finally, the robot head is equipped with a 4th generation Intel® Core i7@1.7GHz
and 8GB of RAM running Ubuntu Linux. Finally, the connection to the robot can be
established through an Ethernet cable or thought a standard 5GHz Wi-Fi network.

1.1.2 The iCub v3 robot

The iCub v3 humanoid robot, depicted in Figure 1.3b, is a state-of-the-art robotic
platform developed at the Italian Institute of Technology and can be seen as an
evolution of the iCub v2.7 presented in Section 1.1.1.

The iCub v3 humanoid robot is larger than a traditional iCub v2.7 platform,
standing 25 cm higher and weighing 22 kg heavier. The robot is 125 cm tall and weighs
52 kg. Figure 1.5 shows the different dimensions of the two platforms. The greater
weight necessitates more powerful leg motors. As a consequence of the increased size

Introduction 18

of the actuators, a new approach to the knee and ankle pitch joints was necessary.
Specifically, instead of being on the same axis, the motor and actuator are separated
and linked by belts. Similarly to iCub v2.7, the iCub v3 robot possesses in total 54
degrees of freedom, including those in the hands and the eyes, and only 23 joints are
used for locomotion. However, unlike iCub v2.7, the torso and shoulder joints are not
tendon-driven. In fact, the joints are directly connected to the motor shaft throughout
the serial direct mechanisms. This provides for a larger range of motion and mechanical
toughness. All 23 joints used for locomotion are powered by brushless three-phase
electric motors equipped with Harmonic Drive transmissions. Each foot is made up of
two rectangular parts, each measuring 25 cm in length and 10 cm in width.

Similarly to iCub v2.7, iCub v3 is equipped with a vast array of sensors, including
accelerometers, gyroscopes, and force/torque sensors. Six six-axis force/torque (F/T)
sensors are included in the iCub. Two are placed on each shoulder and two are attached
to each foot, linking the two portions of the feet to the ankle assembly. The readouts
of the F / T sensors are used to estimate the internal joint torques and the external
force-torque, as presented in [Traversaro, 2017, Chapter 4].

1.1.3 Software infrastructure

A computer infrastructure is required to control the robot. To this end, the Yet Another
Robot Platform (YARP) middleware [Metta et al., 2006] is exploited. YARP is an
open-source multi-platform middleware whose main purpose is to allow communication
between the applications (modules), which can run on different computers. More
specifically, YARP is a set of libraries, protocols, and tools to keep modules and
devices cleanly decoupled. Indeed, it provides an abstraction layer to interact with
physical devices, such as joint encoders and F/T sensors, independently of their actual
implementation. Moreover, sensor acquisition and motor controllers are provided
through YARP interfaces.

Along with the YARP middleware, we took advantage of the iDynTree library [Nori
et al., 2015] to design the controllers. iDynTree is a library of robot dynamics algorithms
for control, estimation, and simulation. It is specifically designed for free-floating robots,
but it is also possible to use it with fixed-base robots. It is written in C++, with Python
and MATLAB interfaces. iDynTree contains support for reading and writing URDF
files, making it possible to use it with any type of robot described by an URDF.

Rapid prototyping is achieved thanks to iDyntree interfaces, which can be easily
integrated into off-the-shelf Python libraries and Simulink and MATLAB toolbox.

Introduction 19

Figure 1.6 TALOS humanoid robot. Image taken from https://pal-robotics.com/
robots/talos/

Controller prototyping also takes advantage of the Gazebo simulation environment
[Koenig and Howard, 2004]. Gazebo is an open source simulator that can efficiently
simulate complex multibody systems. The interface between the controller algorithms
and the simulated version of the robot is handled through the corresponding YARP
plugins [Mingo Hoffman et al., 2014]. The plugins make the algorithm implementation
transparent. In fact, they allow testing of the very same software on both the simulator
and the real robot.

1.2 The TALOS Humanoid Robot

TALOS is a state-of-the-art humanoid robot that integrates the latest cutting-edge
robotics technology [Stasse et al., 2017] designed and developed by PAL-Robotics
– Figure 1.6. By construction, the robot is capable of interacting with a human
environment and targeting industrial applications. Since its release, several versions

https://pal-robotics.com/robots/talos/
https://pal-robotics.com/robots/talos/

Introduction 20

Figure 1.7 Kinematics of Pyrène robot. Image taken from [Stasse et al., 2017]

of TALOS have been produced, the following is the detailed description of Pyrène,
the first robot in the TALOS series built by PAL-Robotics, currently available and
maintained by the Gepetto group at LAAS-CNRS in Toulouse. The content of this
section is inspired by the official presentation of the robot available in Stasse et al.
[2017].

Figure 1.7 presents the kinematics of Pyrène, which weights 95 kg and is 1.75 m
tall. It has 32 actuated degrees of freedom in total and they are distributed as follows:
2 joints in the head, 7 joints in the arm, 3 of which in the shoulder, 2 in the elbow,
and 2 in the wrist, and 1 joint in the gripper. 2 joints allow controlling the pitch and
yaw torso motion. Each leg has 6 joints.

Pyrène is equipped with Cobalt-Nickel-Manganese (Li-CNM) batteries that are
capable of providing 75 V with a capacity of 15 A h. In the case a more power-consuming
motion needs to be performed, the batteries can deliver current peaks of 150 A.

Figure 1.8 presents the actuator structure of the TALOS robot. Each brushless
DC motor is connected to a harmonic drive, which is attached to a torque sensor.
The torque sensor is connected to a link. Unlike iCub, each joint motor assembly is
equipped with a torque sensor that can directly measure the torque applied on the

Introduction 21

motor

harmonic
drive

torque
sensor

link

Figure 1.8 Structure of TALOS actuator

load side. Furthermore, two high-precision encoders (19 bits each) measure the motor
and joint positions. Pyrène mounts an IMU at the level of its waist. This is involved in
the estimation of the robot’s base position and orientation. Similar to iCub, Pyrène is
equipped with 6-axis force/torque sensors at the level of the hands and the feet. These
sensors are often exploited to measure the contact force that the robot acts on the
surrounding environment.

The robot comes with two processors, each with a dual i7 CPU running at 2.8 GHz.
Each CPU contains two cores and is hyperthreaded, giving the machine a total of eight
cores. The communication between the motors and sensors boards and the computers
is implemented with an EtherCAT network [IEC 61158-1, 2019]. Because of TALOS’
EtherCAT communication network, control loops can run at 2 kHz and up to 5 kHz,
allowing for extremely reactive and dynamic motions.

Pyrène runs Ubuntu 18.04 LTS as its operating system. The ROS control system
was used to develop the robot’s low-level system. The multimedia system uses stacks
to provide navigation and map building. Furthermore, a complete Gazebo [Koenig and
Howard, 2004] simulation environment is provided.

1.3 Notation

Throughout the thesis we will use the following notation.

• The ith component of a vector x is denoted as xi.

• The transpose operator is denoted by (·)⊤.

Introduction 22

• Given a function of time f(t) the dot notation denotes the time derivative, i.e.
ḟ := d f

d t
. Higher-order derivatives are denoted by a corresponding amount of

dots.

• In ∈ Rn×n denotes the identity matrix of dimension n.

• 0n×n ∈ Rn×n denotes a zero matrix, while 0n = 0n×1 is a zero column vector of
size n.

• ei is the canonical base in Rn, i.e., ei = [0, 0, . . . , 1, 0, . . . , 0]⊤ ∈ Rn, where the
only unitary element is in position i. Throughout the thesis, n will be 3 or 6
depending on the context.

• The operator × defines the cross product in R3.

• The weighted L2-norm of a vector v ∈ Rn is denoted by ∥v∥Γ, where Γ ∈ Rn×n is
a positive define matrix.

• I = (oI , [I]) is a fixed inertial frame with respect to (w.r.t.) which the robot’s
absolute pose is measured. Its z axis is supposed to point against gravity, while
the x direction defines the forward direction. oI denotes the origin of the frame
and [I] its orientation.

• Given the inertial frame I = (oI , [I]) and a frame B = (oB, [B]), we define
B[I] = (oB, [I]) as the frame having its origin in oB and the orientation as the
inertial frame.

• ARB ∈ SO(3) and AHB ∈ SE(3) denote the rotation and transformation matrices
that transform a vector expressed in the B frame, Bx, into a vector expressed in
the A frame, Ax.

• DvA,D ∈ R6 is the relative velocity between frame A and D, whose coordinates
are expressed in frame D.

• Df ∈ R6 is the 6D force applied in D, whose coordinates are expressed in D.

• xCoM ∈ R3 is the position of the center of mass relative to I.

Chapter 2

Rigid Body System Modeling

In this chapter, we introduce the rotation group SO(3) and the rototranslation (Eu-
clidean) group SE(3). For each group. These two entities play a crucial role in modeling
the dynamics of a rigid body system. For each group, we present the definition and
analyze its properties. The chapter also presents the dynamics of a rigid body system
subject to an external force. The chapter is organized as follows. Section 2.1 intro-
duces the rotation group, Section 2.2 presents the rototranslation group SE(3) and the
dynamics of the rigid body system. Finally, in Section 2.4, we guide the reader through
the similarity between the rotation and the Euclidean groups. We then introduce the
Lie Group as a generalization of the rotation and roto-translation sets. A more rigorous
introduction of Lie Group theory is discussed in Appendix A.

2.1 The Rotation group

The set of rotation matrices SO(3) represents the set of R3×3 orthogonal matrices with
determinant equal to one, namely

SO(3) := {R ∈ R3×3 | R⊤R = I3, det(R) = 1 }. (2.1.1)

It is worth noting that SO(3) is a group under the product operator, i.e., (SO(3), ·).
Indeed, the product of two rotation matrices is still a rotation matrix. Its identity
element is the 3× 3 identity matrix I3 and for each element R ∈ SO(3) there exists
the inverse of R, i.e., R−1 = R⊤ ∈ SO(3).

Rigid Body System Modeling 24

Given two frames A and B, an element ARB ∈ SO(3) denotes the coordinate
transformation from frame B to A. ARB only depends on the relative orientation
between the frame orientations [A] and [B].

Given a 3D vector Bp whose coordinates are expressed in the frame B, applying
ARB to Bp results in the coordinate transformation from the frame B to the frame A,
namely Ap = ARB

Bp – a generalization of this concept is described in Appendix A.2.

2.1.1 Angular velocity

Given a smooth trajectory R(t) ∈ SO(3) with t ∈ R such that R(0) = I3, we define
the time derivative of the rotation matrix as Ṙ(t). Given the SO(3) orthogonality
condition, R(t)R(t)⊤ = I3, the time derivative writes as

Ṙ(t)R(t)⊤ +R(t)Ṙ(t)⊤ = 03×3, (2.1.2)

which can be rearranged as Ṙ(t)R(t)⊤ = −
(
Ṙ(t)R(t)⊤

)⊤
. It is worth noting that

Ṙ(t)R(t)⊤ is a skew-symmetric matrix, and thus (2.1.2) can be rewritten as

Ṙ(t) = (ω(t)×)R(t), (2.1.3)

where ω(t)× belongs is a skew-symmetric matrix of the form

ω× =

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (2.1.4)

If R(t) = I3, Equation (2.1.3) becomes Ṙ(t) = ω×. Hereafter we denote the set of the
3D skew-symmetric matrices with so(3):

so(3) :=
{
S ∈ R3×3 | ST = −S

}
. (2.1.5)

We notice that an element of so(3) is uniquely identified by a 3D vector – see Equa-
tion (2.1.4). We now introduce hat as

ω∧ := ω × . (2.1.6)

Rigid Body System Modeling 25

The inverse of the hat map is denoted as vee and it is defined as

(ω×)∨ := ω. (2.1.7)

A more rigorous definition of the hat and vee operators is provided in Equation (A.3.3).
Given a smooth trajectory AR(t)B ∈ SO(3) representing a time-varying coordinate

transformation from the frame B to the frame A.
We define right trivialized angular velocity, denoted by AωA,B× ∈ so(3) as

AωA,B× := AṘB
AR⊤

B. (2.1.8)

The right trivialized angular velocity is equal to the angular velocity of the frame A
with respect to the frame B whose coordinates are expressed in A.

We define left trivialized angular velocity, denoted with BωA,B× ∈ so(3) as

BωA,B× := AR⊤
B

AṘB. (2.1.9)

The left trivialized angular velocity is equal to the angular velocity of the frame A with
respect to the frame B whose coordinates are expressed in B.

It is worth recalling that the right and left trivialized angular velocities can also be
computed by time differentiating the orthogonality conditions of the form ARB

AR⊤
B = I3

and AR⊤
B

ARB = I3, respectively.

2.1.2 Exponential and Logarithmic map

Given a unit vector1 u ∈ R3 and an angle θ ∈ R the associated rotation matrix is given
by the exponential map as

R = Exp(θu) := I3 + sin(θ)(u×) + (1− cos(θ))(u×)2, (2.1.10)

where (2.1.10) is the well-known Rodrigues’ Rotation Formula [Murray et al., 1994].
Similarly, the logarithmic map is given by

θu = Log(R) := θ(R−R⊤)∨

2 sin(θ) ; θ = cos1
(

tr(R)− 1
2

)
. (2.1.11)

1Given a vector v ∈ Rn we call it unit vector if its norm is equal to 1. i.e., v⊤v = 1.

Rigid Body System Modeling 26

Where tr(R) represents the trace of the matrix R. It is worth noting that the Log map
applied on a rotation matrix returns the axis times the angle of the axis-angle repre-
sentation of the rotation. A detailed and more rigorous definition of the Exponential
and Logarithmic operators is discussed in Appendix A.6

2.1.3 The adjoint representation

Considering the left and right trivialized angular velocities BωA,B× ∈ so(3) and
AωA,B× ∈ so(3) introduced in Equation (2.1.9) and (2.1.8), respectively. We introduce
the adjoint representation as AdARB

(
BωA,B×

)
AωA,B× = AdARB

(
BωA,B×

)
= ARB

(
BωA,B×

)
AR⊤

B. (2.1.12)

A more general definition of the adjoint representation is presented in Equation (A.7.1),
In other words, the adjoint representation AdARB

(
BωA,B×

)
maps a left trivialized

angular velocity into a right trivialized one, i.e., a body frame velocity into an inertial
frame velocity. As discussed in detail in Appendix A.7, it is possible to show that
the adjoint representation is a linear transformation, and as a consequence it can be
uniquely represented by a matrix. We define such a matrix as adjoint matrix and we
denote it with AdARB

:
AdARB

= ARB. (2.1.13)

Indeed, we can prove the identity R(ω×)R⊤ = (Rω)× by letting the right-hand side
term act upon an arbitrary vector v ∈ R3

[(Rω)×] v = (Rω)× v (2.1.14a)
= (Rω)× (RR⊤v) (2.1.14b)
= R

[
ω × (R⊤v)

]
(2.1.14c)

= R(ω×)R⊤v, (2.1.14d)

where we use the fact that for any rotation matrix R and vectors a and b we have
(Ra)× (Rb) = R(a× b).

Rigid Body System Modeling 27

2.2 The Euclidean group

The Euclidean set SE(3) is defined as

SE(3) :=

 R p

01×3 1

 ∈ R4×4 | R ∈ SO(3), p ∈ R3

 . (2.2.1)

SE(3) is a group under the product operator. The identity element of the (SE(3), ·)
group is the 4 × 4 identity matrix I4. Given two frames A and B, an element of
AHB ∈ SE(3) describes the position and orientation of the frame B with respect to
the other frame A and it writes as

AHB :=
ARB

AoB

01×3 1

 . (2.2.2)

Given a 3D vector Bp whose coordinates are written in B and the same vector Ap

whose coordinates are written in A. We define the the homogeneous representation of
Ap and Bp as Ap̄ := (Ap; 1) ∈ R4 and likewise for B p̄. Then

Ap̄ = AHB
B p̄, (2.2.3)

which is the matrix form of Ap = ARB
Bp+ AoB. In this context AHB is often called

homogeneous transformation.

2.2.1 6D spatial velocity

Given a smooth trajectory AHB(t) ∈ SE(3) we define the time derivative of the
homogeneous transformation as AḢB. A more compact representation of AḢB can be
obtained multiplying it by the inverse of AHB on the left or on the right. In both
cases, the result element is the so called 6D spatial velocity and it is an element of
se(3) Where the set se(3) is defined as

se(3) :=

 ω× v

01×3 0

 ∈ R4×4 | ω× ∈ so(3), v ∈ R3

 . (2.2.4)

Hereafter the 6D spatial velocity is often denoted also a twist. We notice that an
element of se(3) is uniquely identified by a 6D vector. Similar to what we discussed
for the angular velocity (Section 2.1.1), we now introduce the hat operator. Given

Rigid Body System Modeling 28

v =
[
v⊤, ω⊤

]⊤
∈ R6. We define the hat operator as

v∧ :=
v
ω

∧

=
 ω× v

01×3 0

 . (2.2.5)

The inverse of the hat map is denoted as vee and it is defined as
 ω× v

01×3 0

∨

:= v. (2.2.6)

A more rigorous definition of the hat and vee operators is provided in Equation (A.3.3).
Considering a smooth curve AHB(t) ∈ SE(3) representing a time-varying homoge-

neous transformation from the frame B to the frame A. We define the right trivialized
spatial velocity, denoted with Av∧

A,B ∈ se(3) as

Av∧
A,B := AḢB

AH−1
B =

AṘB
AȯB

01×3 0

AR⊤
B −AR⊤

B
AoB

01×3 1

 (2.2.7a)

=
AṘB

AR⊤
B

AȯB − AṘB
AR⊤

B
AoB

01×3 0

 . (2.2.7b)

Note that AṘB
AR⊤

B appearing on the right hand side of (2.2.7) is skew symmetric and
it is equal to (2.1.8). We now define BvA,B and BωA,B ∈ R3 as

AvA,B := AȯB − AṘB
AR⊤

B
AoB (2.2.8a)

Aω∧
A,B := AṘB

AR⊤
B. (2.2.8b)

The right trivialized velocity of frame B with respect to the frame A is then given by

AvA,B :=
AvA,B

AωA,B

 ∈ R6. (2.2.9)

If the frame A is the inertial frame and B a frame rigidly attached to the body, the
right trivialized spatial velocity is equivalent to the so-called inertial velocity. The
angular term of AvA,B, BωA,B, is the angular velocity of the frame B with respect to
the frame A, whose coordinates are written in A. The linear component, AvA,B is the
velocity, expressed in A, of a point belonging to the rigid body that is instantaneously
coincident with the origin oA. To give the reader a better understanding, AvA,B is the

Rigid Body System Modeling 29

velocity of a rigid extension of the rigid body that extends up to the origin of the
inertial frame A – see Figure 2.1.

We define the left trivialized spatial velocity, denoted with Bv∧
A,B ∈ se(3), as

Bv∧
A,B := AH−1

B
AḢB =

ART
B −ART

B
AoB

01×3 1

AṘB
AȯB

01×3 0

 (2.2.10a)

=
ART

B
AṘB

ART
B

AȯB

01×3 0

 . (2.2.10b)

Note that ART
B

AṘB appearing on the right hand side of (2.2.10) is skew symmetric
and it is equal to (2.1.9). Let us now define BvA,B and BωA,B ∈ R3 so that

BvA,B := ART
B

AȯB, (2.2.11a)
Bω∧

A,B := ART
B

AṘB. (2.2.11b)

The left trivialized velocity of frame B with respect to frame A is

BvA,B :=
BvA,B

BωA,B

 ∈ R6. (2.2.12)

If the frame A is the inertial frame and B a frame rigidly attached to the body, the
right trivialized spatial velocity is equivalent to the so-called body velocity. BωA,B is
the angular velocity of the frame B with respect to the frame A, whose coordinates
are written in B. The linear component, BvA,B is the velocity of the origin of B, oB

with respect the frame A whose coordinates are written in B – see Figure 2.1.

2.2.2 6D spatial force

Given a rigid body, we introduced the spatial force as a 6D vector containing a pure
force a torque applied to the body 2 [Traversaro et al., 2017, Chapter 2.5]. Similar to
the spatial velocity, also the spatial force admits a left and right trivialization. Given a
body with a frame, denoted with B, rigidly attached to it and a frame A fixed in the
space, we define right trivialized 6D-force, denoted Bf ∈ se(3)∗ as

Bf :=
Bf

Bµ

 ∈ R6. (2.2.13)

2A more rigorous approach is presented in Appendix A.4

Rigid Body System Modeling 30

AωA,B

BωA,B

BvA,B

AvA,B

A

B

oB

oA

O

Figure 2.1 Spatial velocity of a rigid-body. AωA,B and BωA,B are the angular velocity
of the rigid body O expressed in A and B, respectively. AvA,B is the linear velocity,
expressed in A, of a point belonging to the rigid extension of the rigid body O coincident
with the origin oA. BvA,B is the linear velocity, expressed in B, of the point oB.

where se(3)∗ is the dual space of se(3)3 and Bf represents the force acting on the rigid
body and Bµ is the pure torque about the origin oB – see Figure 2.2. We define left
trivialized spatial force, Af ∈ se(3)∗ as

Af :=
Af

Aµ

 ∈ R6. (2.2.14)

Here Af represents the force acting on the rigid body and Aµ is the pure torque about
the origin oA – Figure 2.2. To give the reader a better understanding, Aµ is the torque
about a rigid extension of the rigid body that extends up the origin of the inertial
frame A – see Figure 2.2.

3A rigorous definition of the dual space is provided in Appendix A.4

Rigid Body System Modeling 31

Aµ

Bf

Bµ

A

B

oB

oA

O
Af

Figure 2.2 Spatial force of a rigid-body. Af and Bf are the force acting on the rigid
body O expressed in A and B, respectively. Aµ is the torque, expressed in A, of a
point belonging to the rigid extension of the rigid body O coincident with the origin
oA. Bµ is the torque, expressed in B, of the point oB.

2.2.3 Exponential and Logarithmic map

Given a small increment v∧ ∈ se(3) such that

v∧ =
 θ× ρ

01×3 0

 ∈ se(3), v =
ρ
θ

 ∈ R6, (2.2.15)

where ρ ∈ R3 and θ ∈ R3 are, respectively, the linear and the angular terms of the
increment. The Exp map writes as [Solà et al., 2018]:

H = Exp(v) :=
Exp(θ) V (θ)ρ

03×1 1

 , (2.2.16)

where V (θ) is given by

V (θ) = I3 + 1− cos ∥θ∥
∥θ∥2 (θ×) + ∥θ∥ − sin ∥θ∥

∥θ∥3 (θ×)2. (2.2.17)

Rigid Body System Modeling 32

Given an element of the 3D rigid motion group H ∈ SE(3) such that

H =
 R p

01×3 1

 ∈ SE(3), (2.2.18)

the Log map is

v = Log(H) :=
V −1 (Log(R)) p

Log(R)

 . (2.2.19)

2.2.4 The adjoint representation

Considering AHB ∈ SE(3) and a spatial velocity element Bv∧
A,B ∈ se(3), the adjoint

representation maps a left trivialized spatial velocity into a right trivialized one as:

Av∧
A,B = AdAHB

(
Bv∧

A,B

)
= AHB

Bv∧
A,B

AH−1
B . (2.2.20)

Since the adjoint representation is a linear mapping, there exists the inverse of AdAHB
,

hereafter written as Ad−1
AHB

= AdAH−1
B

. Ad−1
AHB

maps a right trivialized spatial velocity
into a left trivialized one, i.e.,

Bv∧
A,B = Ad−1

AHB

(
Av∧

A,B

)
= AdAH−1

B

(
Av∧

A,B

)
= AH−1

B
Av∧

A,B
AHB. (2.2.21)

Given the adjoint representation AdAHB
, the associated adjoint matrix AdAHB

is

AdAHB
=
ARB

(
AoB×

)
ARB

03×3
ARB

 . (2.2.22)

The adjoint matrix AdAHB
is identified by developing the adjoint representation

in (2.2.20) as

AdH v = [AdH (v∧)]∨ = (HvH−1)∨ (2.2.23a)

=
R(ω×)R⊤ −R(ω×)R⊤o+Rv

01×3 0

∨

(2.2.23b)

=
(Rω)× (o×)Rω +Rv

01×3 0

∨

(2.2.23c)

=
(o×)Rω +Rv

Rω

 =
 R (o×)R
03×3 R

 v
ω

 . (2.2.23d)

Rigid Body System Modeling 33

Where, to improve the readability all the prefix and postfix have been removed.
Hereafter the Adjoint matrix AdAHB

is denoted with AXB. The linear mapping
between the BvA,B and AvA,B writes as

AvA,B = AXB
BvA,B. (2.2.24)

A rigorous definition of the Adjoint representation is provided in Equation (A.7.1).

2.2.5 The co-adjoint representation

Similarly to what we discussed for a 6D velocities, we can define a linear map to change
the coordinates of a 6D force from a frame B to another frame A. This coordinate
transformation is indicated with AX

B and written as

Af = AX
B

Bf (2.2.25)

Sometimes, AX
B is also denoted with Ad∗

AHB
, see Appendix A.7.

The matrix AX
B is induced by the velocity transformation (2.2.22) and it is related

to BXA as
Ad∗

AHB
= AX

B = BX⊤
A = Ad⊤

AH−1
B
. (2.2.26)

In particular

Ad∗
AHB

=
 ARB 03×3(

AoB×
)

ARB
ARB

 . (2.2.27)

2.2.6 The adjoint representation of se(3)

Considering Bu(t)∧ ∈ se(3) and Au(t)∧ ∈ se(3) such that

Au(t) = AXB(t)Bu(t). (2.2.28)

The time derivative of we may evaluate the time of Equation (2.2.28) is given by

d
d t

Au = d
d t

(
AXB

Bu
)

(2.2.29a)

= AXB

(
d
d t

Bu+ BvA,B × Bu

)
, (2.2.29b)

Rigid Body System Modeling 34

where BvA,B× is defined as

BvA,B× :=
BωA,B× BvA,B×

03×3
BωA,B×

 . (2.2.30)

The BvA,B× matrix is often denoted as adBv∧
A,B

, a rigorous explanation of this choice
is given by Equation (A.8.5).

2.2.7 The co-adjoint representation of se(3)

Similarly to what we discussed for a 6D velocities, we can compute the time derivative
of the co-adjoint linear map (2.2.25) as:

d
d tAf = d

d t
(

AX
B

Bf
)

(2.2.31a)

= AX
B

(
d
d tBf + BvA,B ×∗

Bf
)
, (2.2.31b)

where BvA,B×∗ is defined as

BvA,B×∗ :=
BωA,B× 03×3

BvA,B× BωA,B × .

 (2.2.32)

The BvA,B×∗ matrix is often denoted as ad∗
Bv∧

A,B
, a rigorous explanation of this choice

is given by Equation (A.8.13).

2.2.8 Mixed spatial velocity

In some applications, it may be helpful to define the 6D velocity as AȯB

AωA,B

 . (2.2.33)

This representation is often called hybrid [Murray et al., 1994] or mixed [Traversaro
et al., 2017, Chapter 2.3] velocity representation. To avoid confusion with hybrid
systems theory, we will call it as mixed velocity of frame B with respect to frame A.
The mixed representation is particularly helpful when designing and implementing
controllers that aim to follow a desired Cartesian trajectory. To simplify the description
of the algorithms and concepts presented in this thesis, we need a way to express this

Rigid Body System Modeling 35

quantity coherently with the rest of the concepts introduced until know. Given two
frame A and B with a given origin and orientation, hereafter indicated as oA, oB and
[A] and [B], we introduce the frame B[A] := (oB, [A]) as a frame having the origin on
oB and oriented as A. We formally define the mixed velocity B[A]vA,B as

B[A]vA,B := B[A]XB
BvA,B =

ARB 03×3

03×3
ARB

AR⊤
B

AȯB

BωA,B

 =
 AȯB

AωA,B

 . (2.2.34)

It is important to notice that B[A]vA,B is not isomorphic to any element of se(3), i.e.,
B[A]v∧

A,B /∈ se(3). On the other hand, B[A]vA,B can be seen as the row concatenation
of the left trivialized linear velocity whose coordinate are expressed in A and the
right trivialized angular velocity. In other words B[A]vA,B will belong to the Cartesian
product of R3 and so(3), i.e., B[A]v∧

A,B ∈ R3 × so(3).

2.2.9 Mixed spatial force

Smilar to the mixed spatial velocity, in some applications, it may be helpful to define
the 6D force as

B[A]f =
 Af

B[A]µ

 . (2.2.35)

This representation is often called mixed [Traversaro et al., 2017, Chapter 2.3] force
representation. Given two frames A and B with a given origin and orientation, hereafter
indicated as oA, oB and [A] and [B], we introduce the frame B[A] := (oB, [A]) as a
frame having the origin on oB and oriented as A. We formally define the mixed spatial
force B[A]f as

B[A]f := Ad∗
B[A]HB Bf = B[A]X

B
Bf =

ARB 03×3

03×3
ARB

Bf

Bµ

 =
 Af

B[A]µ

 . (2.2.36)

To give the reader a better comprehension, we may think that a mixed spatial force is
a 6D vector whose linear component is the force acting on the rigid body whose entries
are written with respect to the frame A, while the angular component is the torque
about oB whose coordinate are written in A.

The mixed spatial force will play a crucial role in the design of the control systems
presented in the following parts.

Rigid Body System Modeling 36

2.3 Rigid body dynamics

Let a rigid body O lying in a uniform gravitational filed and given a frame B rigidly
attached to O. Given an inertial frame I, the configuration of O is completely
determined by the homogeneous transformation IHB ∈ SE(3). We denote BvI,B ∈ se(3)
the left trivialized spatial velocity of O. Let m the mass of the rigid body, I ∈ R3×3

the 3D inertial matrix of the body expressed in B and Bpc the position of the center of
mass (CoM) expressed in B, we introduce the 6D inertia matrix of the body as

BMB =
 m −mBpc×
mBpc× I

 . (2.3.1)

It is important to recall that BMB is a constant matrix.
We now introduce the left-trivialized Lagrangian of the rigid body, denoted with

L(IHB,
BvI,B), as

L(IHB,
BvI,B) = K(BvI,B)− U(IHB) (2.3.2a)

1
2

Bv⊤
I,B BMB

BvI,B +
[
g⊤ 01×3

]
BHI

mBpc

m

 , (2.3.2b)

where K(BvI,B) is the kinetic energy, while U(IHB) is the potential energy. g ∈ R3 is
the gravitational acceleration vector. By applying Hamilton’s Variational Principle, it
is possible to prove that given a time interval [t0, tf], the trajectory BHI of the rigid
body O is the one that minimizes the action [Traversaro, 2017, Theorem 2.1]:

G =
∫ tf

t0
L(IHB,

BvI,B) d t, (2.3.3)

where L(IHB,
BvI,B) is given by (2.3.2).

In particular the resulting equation of motions are the one that satisfies the following
differential equation

BMB
Bv̇I,B + BvI,B ×∗

BMB
BvI,B = BMB

IR⊤
Bg

03×1

 . (2.3.4)

The reader can find a brief introduction of Hamilton’s Variational Principle in
Appendix D.1.

Rigid Body System Modeling 37

In the case of a non-conservative spatial force acting on the body, Equation (2.3.4)
becomes

BMB
Bv̇I,B + BvI,B ×∗

BMB
BvI,B = BMB

IR⊤
Bg

03×1

+ Bf. (2.3.5)

Equation (2.3.5) can be expressed also with respect to the inertial frame I

IMB
Bv̇I,B + IvI,B ×∗

IMB
IvI,B = IMB

 g

03×1

+ If. (2.3.6)

Even if (2.3.6) seems similar to (2.3.5), it is important to underline that BMB is a
constant matrix depending only on the geometry of the rigid body, while IMB is a
time-varying quantity that depends on the position of the rigid-body - i.e., IMB =
IX

B
BMBIX

B.
We finally introduce the 6D spatial momentum of the body O with respect to a

frame I expressed in B and denoted with BhI,B as a 6D vector isomorphic to se(3)∗,
i.e., BhI,B ∈ R6 ∼= se(3)∗ and it writes as

BhI,B := Ad∗
BHI BMB

BvI,B. (2.3.7)

By means of the 6D spatial momentum, Equation (2.3.6) can be rewritten as [Feather-
stone, 2014].

I ḣI,B = IX
B

BMB

IR⊤
Bg

03×1

+ If. (2.3.8)

Equation (2.3.8) is also known as Newton-Euler equations for a rigid body.

2.4 The rotation and euclidean groups: a Lie groups
prospective

In Sections 2.1 and 2.2 we present the rotation and Euclidian groups. One may have
noticed some similarities between the two sets. Indeed, we have

• Both sets are groups under the matrix product operator.

• Both groups admit a left and a right velocity

• Both groups admit an Exponential and a Logarithm map.

Rigid Body System Modeling 38

This similarity is not accidental. Indeed SO(3) and SE(3) are two examples of
Matrix Lie Group. In this context we say that the angular velocity ω and the spatial
6D velocity v belong to the Lie Algebra of SO(3) and SE(3), denoted respectively by
so(3) and se(3). In Appendix A, we generalize the concepts presented in this chapter
to a generic Matrix Lie Group.

Chapter 3

Modeling of Floating Base
Multi-Body Systems

In the previous chapter, we introduced the rotation and the rototranslation matrix
Lie Group and the associated rigid body dynamics. We now exploit these concepts to
describe the kinematics and the dynamics of a floating base system. What is presented
in this chapter is crucial to fully understand the design of the controllers and the
estimators presented in Part II and Part III. The chapter is organized as follows. In
Section 3.1, we describe a multi-body system in terms of interaction between links
and joints. Such a description is often denoted system model [Featherstone, 2014].
Section 3.2 discusses the kinematics of the multi-body system. Here, we present the
minimum set of coordinates q as an element of a Lie group Q. We also introduce the
velocity of the multi-body system ν as an element of the Lie algebra q. Section 3.2 also
contains the definition of the forward kinematics function and the relation between
the link velocity and the velocity of the multi-body system ν. Section 3.3 presents
the dynamics equation of the multi-body system, since the multi-body configuration
space is not a vector space, the dynamics is obtained by extending the Euler-Poincaré
presented in Section 2.3 to case of multi-body systems [Marsden and Ratiu, 2010].
Finally, Section 3.4 discusses the centroidal dynamics [Orin et al., 2013] as the aggregate
linear and angular momentum of each link of the robot referred to the center of mass
of the robot.

Modeling of Floating Base Multi-Body Systems 40

3.1 Floating base multi-body system modeling

A rigid-body system is an assembly of component parts, namely: nb rigid bodies and nj

joints which are responsible for the kinematic constraints in the system. In this section,
we present a formalism used to describe rigid-body systems in terms of graphs. In
particular, we seek to describe the interaction between bodies and joints as an element
of nodes and the arch of a graph. We call such a description system model with respect
to an inertial frame I.

A system model is often expressed in the form of a connectivity graph having the
following properties:

• Each node represents one rigid body in the dynamical system. We assume that
at least one frame is rigidly attached to each body;

• Each arc represents a joint;

• There exists one node, i.e. a rigid body, which is called base of the multi-body
system. The base is indicated by the frame B;

• The graph is undirected;

• The graph is connected, i.e., there exists at least one path between any two
nodes.

If the base of the multi-body system does not have an a priori fixed pose with respect
to an inertial frame, I, the associated body is called floating base. In this case, the
pose (position and orientation) of the floating base B with respect to the inertial frame
I is given by the element of the SE(3) and it writes as:

IHB =
IRB

IpB

01×3 1

 . (3.1.1)

A graph is a topological tree if there exists exactly one path between any two nodes in
the graph. If the connectivity graph of a rigid-body system is a topological tree, then
we call the system itself a kinematic tree. If the rigid-body system is represented by a
kinematic tree, there exists a well-defined relation between the number of joints nj,
and the number of rigid bodies nb, that is,

nb = nj + 1. (3.1.2)

Modeling of Floating Base Multi-Body Systems 41

0 1 2 njnj − 1nj − 2

1 2 njnj − 1

(a) Regular numbering applied to an unbranched kinematic tree

0 1 2

345

67

8

1 267

8

3

45

(b) Regular numbering applied to a kinematic tree

Figure 3.1 Schematic representation of a multi-body structure. The links are repre-
sented by the graph nodes, while joints are the graph’s arcs. The links and joints are
named by applying the Regular numbering principle.

From now on, we consider only floating base multi-body systems characterized by a
kinematic tree.

Once we describe the rigid-body system as a graph, we aim to number the nodes
and arcs following the regular numbering scheme [Featherstone, 2014]. We now present
the scheme for the topological tree. The generic scheme that applies to the generic
graph is described in [Featherstone, 2014, Section 4.1.2]. Given a kinematic tree G,
we denote the elements as follows:

• The base is represented by the number 0;

• The remaining nb − 1 nodes are numbered in any order such that each node has
a higher number than its parent in G ;

• The arcs are identified with a number for 1 to nj such that the arc i connects
between node i and its parent.

If these principles are applied to an unbranched kinematic tree (one with no more
than one child), the bodies and joints are numbered sequentially from the base, as
shown in Figure 3.1a. On the other hand, if the tree is composed of multiple branches,
the numbering is not unique. Figure 3.1b represents one of the possible examples.

Modeling of Floating Base Multi-Body Systems 42

A connectivity graph is fully determined by a pair of arrays named p and s, such
that the element i in p is the vector of the predecessor of the joint i while the element
i in s contains the successor of the joint i. Taking as an example the unbranched
kinematic tree in Figure 3.1a the arrays s and p are given by

p =
[
0 1 . . . nj − 2 nj − 1

]
, s =

[
1 2 . . . nj − 1 nj

]
. (3.1.3)

On the other hand, the tree in Figure 3.1b is described by:

p =
[
0 1 0 3 4 0 0

]
, s =

[
1 2 3 4 5 6 7 8

]
. (3.1.4)

The parent array λ identifies the parent of each body. λ(i) is the parent of the body
i. We finally introduce for any body i three sets, namely: κ(i), µ(i) and ν(i). κ(i) is
the set of all joints on the path between body i and base. If i = 0, i.e. the body is
the base, the set is empty. µ(i) is the set of the children of body i, and ν(i) is the set
of bodies in the subtree starting at body i. κ(i), µ(i) and ν(i) are called the support,
child and subtree sets, respectively. Given the tree in Figure 3.1b the support, child
and subtree sets are given by

κ(0) = ∅ µ(0) = {1, 3, 6, 8} ν(0) = {0, 1, 2, 3, 4, 5, 6, 7, 8} (3.1.5a)
κ(1) = {1} µ(1) = {2} ν(1) = {1, 2} (3.1.5b)
κ(2) = {1, 2} µ(2) = ∅ ν(2) = {2} (3.1.5c)
κ(3) = {3} µ(3) = {4} ν(3) = {3, 4, 5} (3.1.5d)
κ(4) = {3, 4} µ(4) = {5} ν(4) = {4, 5} (3.1.5e)
κ(5) = {3, 4, 5} µ(5) = ∅ ν(5) = {5} (3.1.5f)
κ(6) = {6} µ(6) = {7} ν(6) = {6, 7} (3.1.5g)
κ(7) = {6, 7} µ(7) = ∅ ν(7) = {7} (3.1.5h)
κ(8) = {8} µ(8) = ∅ ν(8) = {8}. (3.1.5i)

When a joint connects two bodies, its relative motion is limited. The mobility
allowed by the joint and the placement of the joint relative to each body are necessary
for a thorough description of the restriction. A joint model explains the former. The
geometry of the system determines the latter.

Modeling of Floating Base Multi-Body Systems 43

B0

B1

B2
B3

Joint 3 Joint 2

B(1,3)

B(1,1)

B(1,2)

B(0,1)

(0,1)H0

(1,1)H(0,1)

1H(1,1)

1H0

3H1

(3,3)H(1,3)

3H(1,3)

B(3,3)

2H1

B(2,2)

(2,3)H(1,2)

Joint 1

(1,3)H1 (1,2)H1

2H(2,2)

Figure 3.2 Geometric model of a rigid-body system. The red frames are the link
frames. The green frames are the joint frames. Each arrow represents a homogeneous
transformation. A black arrow indicates a constant transformation, while a blue one a
joint state-dependent transformation.

The joint model In this context, a joint may be thought of as a motion constraint
between two Cartesian frames, one of which is embedded in the body i and the other
in its parent, λ(i). The kind of mobility that a joint allows is determined by its type of
joint. A revolute joint, for example, provides for pure rotation along a single axis, but
a spherical joint allows for unrestricted rotation around a single point. Consequently,
we should introduce the admissible motions for each type of joint. However, since in
this thesis we assume that the floating base system is composed only of one-degree-
of-freedom revolute joints, we analyze the joint characteristics only for this kind of
joint. A revolute joint j is completely characterized by an axis ja ∈ S2 and an angle sj ,
where S2 is the set of 3D vectors with norm equal to 1, i.e., S2 =

{
x ∈ R3|x⊤x = 1

}
and sj ∈ R.

Modeling of Floating Base Multi-Body Systems 44

Geometric model The geometric model describes the location of each joint in each
rigid body. In detail, each body i is characterized by a set of frames. One, known as
link frame, identifies the position of the link. The others are placed in the joints, j.
Figure 3.2 represents the geometry model of a rigid-body system. Here, each rigid body
has a frame embedded in it, which defines a local coordinate system for that body. In
Figure 3.2 these frames are labeled as Bi where i represents the body index. Figure 3.2
also presents several frames with names of the form B(i,j) where i refers to a body and
j to the associated joint. The position and the orientation of the frame B(i,j) with
respect to Bi are constant and are given by the transformation (i,j)Hi. Finally, each
joint describes a joint transform labeled (i,k)H(j,k) where i refers to the parent body,
j to the child body, and k to the joint. (i,k)H(j,k) depends only on the joint position.
From now on we assume that, given two rigid bodies i and j connected by a joint k,
the transformation (i,k)Hi and (j,k)Hj are chosen so that (i,k)H(j,k) = I4 only if the joint
position state is equal to 0, i.e., (i,k)H(j,k)(sj) = (i,k)H(j,k)(0) = I4.

3.2 Multi-body kinematics

Once the floating base multi-body system has been described in the form of a connec-
tivity graph, the position and orientation of the link i can be reconstruct as follows:

IHi = IH0
∏

j∈κ(i)

λ(j)Hj, (3.2.1)

where in our case the link 0 is the floating base of the robot, that is, 0 ≡ B and
IH0 ≡ IHB – see Equation (3.1.1). The transformation matrix λ(j)Hj depends upon
the position of the joint j, henceforth indicated with sj. To give the reader a better
comprehension of Equation (3.2.1), we can imagine that IHi is given by the concatena-
tion of SE(3) elements that express the link’s frame to the parent. Equation (3.2.1)
can be obtained by exploring the connectivity graph from the link i to the base link.
For example, considering the tree in Figure 3.1b and the link 7, IH7 is given by
IH7 = IH0

0H6(s6)6H7(s7).
Following the geometric model in Figure 3.2, λ(j)Hj transformation can be seen as

a composition of three transformations. λ(j)Hj writes

λ(j)Hj = λ(j)H(λ(j),j)
(λ(j),j)H(j,j)

(j,j)Hj, (3.2.2)

Modeling of Floating Base Multi-Body Systems 45

where λ(j)H(λ(j),j) and (j,j)Hj give the position and orientation of the link frames with
respect to the frame associated with the joint. (λ(j),j)H(j,j) depends on the joint’s
position value. For a revolute joint characterized by the axis ja ∈ S2 and an angle
sj ∈ R, (λ(j),j)H(j,j) is given by

(λ(j),j)H(j,j) = Exp
03×1

sj ja

 = exp
(sj ja)× 03×1

01×3 0

 (3.2.3)

Recalling that the exponential operator for a skew-symmetric matrix given by the
well-known Rodriguerz formula – see Section 2.1.2 [Murray et al., 1994], (λ(j),j)H(j,j)

writes as

(λ(j),j)H(j,j)(sj) =
(λ(j),j)R(j,j)(sj) 03×1

01×3 1

(λ(j),j)R(j,j)(sj) = I3 + cos(sj)(ja×) + sin(sj)(ja×)2.

(3.2.4)

We now define the forward kinematics function of a floating base system described as
a kinematic tree composed of nj + 1 rigid bodes connected with nj joints as:

Π : SE(3)× Rnj −→ SE(3); IHi = Π
(

IHB, s
)

= IH0
∏

j∈κ(i)

λ(j)Hj. (3.2.5)

We define the center of mass (CoM) of the multi-body system, denoted by xCoM,
as the weighted average of all the links CoM positions:

xCoM := IHB

∑
i

mi

m
BHi

ipCoM, (3.2.6)

where ipCoM ∈ R3 is the (constant) CoM position of link i expressed in i coordinates.
m,mi ∈ R are respectively the robot total mass and the i-th link mass.

Since every link pose can be computed as a function of the base pose IHB and the
joint position values s, we define q as the minimum set of coordinates as

qSE(3) := (IHB, s) ∈ SE(3)× Rn = QSE(3). (3.2.7)

QSE(3) is a composition of Lie groups, as a consequence, it is the Lie group itself.
Consequently, there exists a Lie algebra qSE(3) = se(3) × Rn associated with QSE(3).
The element of the Lie algebra is the spatial base velocity and the joint velocity. Since

Modeling of Floating Base Multi-Body Systems 46

in the rest of the thesis we often use the mixed spatial velocity representation, we often
indicate q as

qR3×SO(3) := (AoB,
IRB, s) ∈ R3 × SO(3)× Rn = QR3×SO(3). (3.2.8)

Similar to before QR3×SO(3) is a composition of Lie groups, so it admits a Lie algebra
qR3×SO(3) ∈ R3 × so(3) × Rn. The elements of the Lie algebra are the spatial base
velocity in mixed representation and the joints velocity.

Given a link L, we now aim to write a relation between its spatial velocity and the
elements of qSE(3). The following results are obtained by describing the link velocity by
means of the left trivialized spatial velocity; however, similar results hold also if the
velocity is expressed in right trivialization or mixed representation. Indeed, a spatial
velocity in body frame, i.e., left trivialized, can be converted in inertial frame and in
mixed representation thanks to Equations (2.2.24) and (2.2.34), respectively. Let us
now define the velocity of a link L as LvI,L. LvI,L can be decomposed into two terms
as

LvI,L = LXB
BvI,B + LvB,L, (3.2.9)

where BvI,B is the left trivialized base velocity, while LvB,L is a function of the position
of the joints s ∈ Rnj and the velocity ṡ ∈ Rnj . In fact LvB,L is given by

Lv∧
B,L = BH−1

L
BḢL (3.2.10a)

=
∑

j∈κ(L)

(
LHλ(j)

∂

∂sj

(
λ(j)Hj

)
jHL

)
ṡj (3.2.10b)

=
∑

j∈κ(L)

(
LHj

λ(j)H−1
j

∂

∂sj

(
λ(j)Hj

)
jHL

)
ṡj (3.2.10c)

=
∑

j∈κ(L)

[
LXj

(
λ(j)H−1

j

∂

∂sj

(
λ(j)Hj

))∨]∧

ṡj, (3.2.10d)

Modeling of Floating Base Multi-Body Systems 47

where from (3.2.10c) to (3.2.10d) we used the fact that the adjoint action is a linear
transformation so it can be associated to the adjoint matrix, i.e.

LHj
λ(j)H−1

j

∂

∂sj

(
λ(j)Hj

)
jHL= AdLHλ(j)

(
λ(j)H−1

j

∂

∂sj

(
λ(j)Hj

))
(3.2.11a)

=
[
AdLHλ(j)

(
λ(j)H−1

j

∂

∂sj

(
λ(j)Hj

))∨]∧

(3.2.11b)

=
[

LXj

(
λ(j)H−1

j

∂

∂sj

(
λ(j)Hj

))∨]∧

. (3.2.11c)

Let us now introduce the left-trivialized joint motion subspace js as

js =
(

λ(j)H−1
j

∂

∂sj

(
λ(j)Hj

))∨

, (3.2.12)

equation (3.2.10) becomes
LvB,L =

∑
j∈κL

LXj
js ṡj. (3.2.13)

We observe that, in the case of a revolute joint, js is constant and it depends on the
revolute axis [Traversaro et al., 2017].

Since LvB,L is an affine function of joints velocity ṡ ∈ Rnj , Equation (3.2.13) can
be written as

LvB,L = LJ ṡ
B,L(s)ṡ, (3.2.14)

In summary, the left trivialized link velocity is as follows:

LvI,L =
[

LXB
LJ ṡ

B,L

] BvI,B

ṡ

 = LJB
I,L

Bν. (3.2.15)

LJB
I,L ∈ R6×(6+nj) is the left-trivialized Jacobian of the link L, Bν ∈ R6+nj is the left

trivialized multi-body system velocity and Bν∧ ∈ qSE(3):

Bν =
BvI,B

ṡ

 . (3.2.16)

Modeling of Floating Base Multi-Body Systems 48

Given a left trivialized link velocity LvI,L, we obtain the associated mixed represen-
tation as

L[I]vI,L= L[I]XL

[
LXB

LJ ṡ
B,L

] BXB[I] 06×nj

0nj×6 Inj

 B[I]vI,B

ṡ

 (3.2.17a)

= L[I]J
B[I]
I,L

B[I]ν. (3.2.17b)

where L[I]J
B[I]
I,L ∈ R6×(6+nj) is the mixed velocity Jacobian of link L and B[I]ν ∈ R6+nj

is the mixed multi-body system velocity

B[I]ν =
B[I]vI,B

ṡ

 . (3.2.18)

To simplify the notation, we will simply assume that we use the mixed representation,
i.e. L[I]J

B[I]
I,L will be simply indicated JL. Similarly, B[I]ν will become ν.

3.3 Multi-body dynamics

As mentioned in Section 3.2, the robot configuration space is characterized by the
position and the orientation of the base frame B with respect to the inertial frame I, and
the joints’ position coordinates s. Hereafter, we indicate the robot configuration with the
following triplet q = (IpB,

IRB, s). q is an element of a Lie group, Q = R3×SO(3)×Rn.
The associated Lie algebra is denoted as q = R3× so(3)×Rn, where q is isomorphic to
R3 ×R3 ×Rn, i.e. q ≈ R3 ×R3 ×Rn. The velocity of the multi-body system belongs to
q. We define it as the following triplet ν =

(
I ṗB,

B[I]ω̇I,B, ṡ
)
. From here on, we assume

that the multi-body system interacts with the environment, exchanging nc distinct 6D
spatial forces – see Section 2.2.2. Since the configuration space is not a vector space,
we cannot apply the classical Euler-Lagrange equations. This is solved by employing
the Euler-Poincaré formalism [Marsden and Ratiu, 2010, Chapter 13.5], obtaining as a
final result:

M(q)ν̇ + C(q, ν)ν +G(q) =
06×n

In

 τs +
nc∑

k=1
J⊤

Ck Ck[I]fk. (3.3.1)

Here M ∈ R(n+6)×(n+6) is the mass matrix, C ∈ R(n+6)×(n+6) accounts for Coriolis
and centrifugal effects, and G ∈ Rn+6 contains the gravity term. τs ∈ Rn is a vector
representing the internal actuation torques, Ck[I]fk ∈ R6 denotes the k-th external

Modeling of Floating Base Multi-Body Systems 49

wrench applied by the environment on the robot expressed in mixed representation. The
Jacobian JCk

is the mixed velocity Jacobian of the contact frame Ck. Equation (3.3.1)
is strictly related to the rigid body dynamics presented in Section 2.3. In fact, we
introduce the left-tirvialized Lagrangian of the multi-body system L(q, ν) as

L(q, ν) = K(ν)− U(q) (3.3.2)

where K and U represent the kinetic and potential energy of the multi-body system
and they are described in [Traversaro, 2017, Section 3.5]. It is possible to prove that
Equation (3.3.1) is the solution of Hamilton’s Variational Principle considering the
Lagrangian function (3.3.2).

By stacking all the Jacobians and contact wrenches, we can rewrite Equation (3.3.1)
as follows:

M(q)ν̇ + C(q, ν)ν +G(q) =
06×n

In

 τs + J⊤
C f, (3.3.3)

where

JC(q) =

JC1(q)

...
JCnc

(q)

 , f =

C1[I]f1

...
Cnc [I]fnc

 . (3.3.4)

In the case of rigid contacts between the robot and environment, we consider a set of
holonomic constraints represented as

IHCi
≡ IH̄Ci

. (3.3.5)

In other words, we require that the position and orientation of the frame associated
with each contact link to be constant and equal to IH̄Ci

. By time differentiating
Equation (3.3.5) and recalling that v = JCi

ν (3.2.17), we rewrite the rigid contact
constraint in the Pfaffian form [Lynch and Park, 2017, Section 8.7] as

JCi
(q)ν = 0. (3.3.6)

Here, we prescribe the spatial velocity associated with each link in contact equal to zero.
Since the Jacobian matrix is a smooth mapping from Q to R6×(6+n), Equation (3.3.6)
can be differentiated

JCi
ν̇ + J̇Ci

ν = 0, (3.3.7)

Modeling of Floating Base Multi-Body Systems 50

obtaining a dependency on ν̇. Equations (3.3.3) and (3.3.7) together are the dynamical
equations that describe the motion of a floating-base system that instantiates rigid
contacts with the environment.

The dynamics (3.3.1) is often expressed by separating the first 6 rows, referring to
the non-actuated floating base, from the last n rows referring to the actuated joints as:

Mν(q)ν̇ + hν(q, ν) =
nc∑

k=1
J⊤

Ckν
(q) Ck[I]fk, (3.3.8a)

Ms(q)ν̇ + hs(q, ν) = τs +
nc∑

k=1
J⊤

Cks
(q) Ck[I]fk, (3.3.8b)

where h(q, ν) = C(q, ν) +G(q), the subscript ν refers to the first 6 rows of the matrix,
while s refers to the last n rows.

3.4 Centroidal dynamics

Let us introduce the articulated body momentum as the sum of the 6D spatial momentum
(2.3.7) of each rigid body of the floating base system, i.e.

Bh =
nc∑

j=1
Ad∗

BHj jMj
jvI,j. (3.4.1)

In some cases, it is convenient to introduce the articulated body centroidal momentum.
Let Ḡ be a frame whose origin is located on the CoM of the multi-body system, while
the orientation is parallel to the inertial frame I. The articulated body centroidal
momentum, often shortened to centroidal momentum and denoted with Ḡh ∈ R6 is
given by

Ḡh =
Ḡh

p

Ḡh
ω

 := Ad∗̄
GHB

Bh (3.4.2a)

= Ad∗̄
GHB

∑
j

Ad∗
BHj jMj

jvI,j (3.4.2b)

= ḠX
B
∑

j

BX
i
jMj

jvI,j. (3.4.2c)

It is worth recalling that the linear component of the centroidal momentum Ḡh
p depends

linearly on the CoM velocity
Ḡh

p = mẋCoM. (3.4.3)

Modeling of Floating Base Multi-Body Systems 51

Seeing that the link velocity linearly depends on the velocity of the multi-body
system ν (3.2.17), Equation (3.4.2) can be factorized as follows

Ḡh = JCMMν (3.4.4)

where JCMM ∈ R6×n is the Centroidal Momentum Matrix (CMM) [Orin and Goswami,
2008].

The centroidal momentum rate of change balances the external wrenches applied
to the robot:

Ḡḣ=
nc∑

j=1
ḠX

Cj
Cj

fj +mḡ (3.4.5a)

=
nc∑

j=1

 IRCj
03×3[(

Ipj − xCoM
)
×
]

IRCj
IRCj

 Cj
fj +mḡ (3.4.5b)

The adjoint matrix ḠX
Cj ∈ R6×6 transforms the contact wrench from the application

frame (located in Ipj with orientation IRj) to Ḡ. Finally, ḡ = [0 0 −g 0 0 0]⊤ is the 6D
gravity acceleration vector.

If the external wrenches are expressed in mixed representation, the centroidal
momentum dynamics (3.4.5) becomes

Ḡḣ=
nc∑

j=1
ḠX

Cj [I]
Cj [I]f +mḡ (3.4.6a)

=
nc∑

j=1

 I3 03×3(
Ipj − xCoM

)
× I3

 Cj [I]fj +mḡ. (3.4.6b)

As will become evident later on in the manuscript, the centroidal momentum
dynamics will play a crucial role in the design of the controller presented in Chapter 11.

Chapter 4

Simplified Models for Locomotion

In Chapter 3 we present the kinematics and the dynamics of a floating base system. In
this chapter, we present some approximations of the centroidal dynamics presented in
Section 3.4 by assuming some simplifying hypotheses. The tools introduced in this
chapter will be considered in the design of the simplified model controllers presented
in Chapter 10.

Assuming that a robot makes a single contact with the environment while keeping
a constant center of mass height, the robot’s centroidal dynamics can be approximated
to the well-known Linear Inverted Pendulum (LIPM) [Kajita et al., 2003, 2001] and the
Capture Point model [Pratt et al., 2006]. These two models assume constant angular
momentum and approximate the center of mass dynamics with a linear time-invariant
dynamical system, making the study of a feasible trajectory for the center of mass
simpler. The LIPM and the CP became very popular along with the Zero Moment
Point (ZMP) as a contact feasibility criterion [Vukobratovic and Juricic, 1969]. Similar
to the ZMP, the centroidal moment pivot (CMP) has a widespread diffusion in the
modeling and control of floating base system [Hopkins et al., 2014; Li et al., 2020;
Popovic et al., 2005; Seyde et al., 2018; Shafiee-Ashtiani et al., 2017a]. The definition
of the CMP is pivotal in considering a variable centroidal angular momentum while
generating a feasible CoM trajectory. Indeed, when the CMP corresponds to the ZMP
the centroidal angular momentum remains constant. Englsberger et al. [2015a, 2011]
extends the Capture Point in the 3D scenario, defining the Divergent Component of
Motion (DCM). The DCM is a linear combination of the center of mass position and
velocity. By definition, the CoM can be indirectly stabilized by tracking an appropriate
DCM trajectory. The DCM model assumes a constant natural frequency of the LIPM
for trajectory planning. As a consequence, the ZMP can deviate from the desired

Simplified Models for Locomotion 53

mg

z

x y
I

xCoM

px

pf

(a) Model representation

x1

x2

(b) Phase space representation

Figure 4.1 The linear inverted pendulum approximates a humanoid robot walking
on a planar ground while keeping a constant CoM height and zero centroidal angular
momentum rate of change.

reference when the vertical CoM dynamics does not match the time-invariant LIPM
dynamics. Hopkins et al. [2014] attempt at loosening this assumption by extending
the DCM to consider a time-varying natural frequency.

In this chapter, we present a short overview of the simplified models that are often
exploited by the robot locomotion community. In particular, Section 4.1 introduces
the LIPM. Section 4.2 and 4.3 present the ZMP and CMP, respectively. We introduce
the DCM in Section 4.4. Finally, Section 4.5 extends the definition of DCM to the
time-varying case.

4.1 The linear inverted pendulum

When a biped robot supports its body on one leg, its dynamics can be approximated
by the Linear Inverted Pendulum Model (LIPM). This model approximates floating
base dynamics (3.3.1) simply considering the center of mass, which is represented as
a point mass on top of a pendulum with negligible inertia and one contact, i.e., one
stance foot, which is rigidly in contact with the ground – Figure 4.1a.

Let us assume an inertial frame I whose z is pointing against the gravity vector g
and assuming:

Simplified Models for Locomotion 54

1. a pure force pf ∈ R3 located at the point px on the ground acts on the system;

2. the contact point px is weakly stable, i.e., pẋ = 0 and the contact force pf belongs
to the friction cone 1, that is, pf ∈ Q3

µ where

Q3
µ =

{
pf ∈ R3 | pfzµ ≥

√
pf 2

x + pf 2
y

}
(4.1.1)

3. the z component of the distance between contact location px and the CoM
xCoM is kept constant during the motion i.e., e⊤

3 (px − xCoM) = h, e⊤
3 ẋCoM = 0,

e⊤
3 ẍCoM = 0;

4. the centroidal angular momentum is constantly zero, i.e., Ḡh
ω = 0 and Ḡḣ

ω = 0.

Taking into account the assumptions, the centroidal momentum dynamics (3.4.5)
becomes

Ḡh =
Ḡh

p

Ḡh
ω

 =
 pf −mg
(px− xCoM)∧

pf

 (4.1.2a)

(px− xCoM)∧
pf = 0. (4.1.2b)

Given the hypothesis 3 and the constraint (4.1.2b), the components pf writes as

pfx = mζ2e⊤
1 (xCoM − px) , (4.1.3a)

pfy = mζ2e⊤
2 (xCoM − px) , (4.1.3b)

pfz = −m|g|, (4.1.3c)

where ζ =
√

|g|
h

is the time constant of the LIPM. pfx, pfy, and pfz represent the
components x, y, and z of the vector pf . By substituting the contact force values (4.1.3)

1As discussed in Section 5.1.2, the friction cone is an example of a second-order cone. Where a
second-order cone, also known as Lorentz cone, is given by

Qn+1=
{[

x
t

]
∈ Rn+1

∣∣∣∣ ∥x∥ ≤ t

}
=
{[

x
t

]
∈ Rn+1

∣∣∣∣ [xt
]⊤ [

In 0n×1
01×n −1

] [
x
t

]
≤ 0, t ≥ 0

}
.

Simplified Models for Locomotion 55

into the dynamics (4.1.2), we obtain the following:

ẍCoM =

e⊤

1

e⊤
2

03×1

 ζ2 (xCoM − px) .

Since the dynamics is different from zero only in the planar coordinates, we can define

xLIP =
e⊤

1

e⊤
2

xCoM, xLIP ∈ R2, (4.1.4)

and, without loss of generality, we consider px ∈ R2. We then obtain the LIP dynamic
equation,

ẍLIP = ζ2 (xLIP − px) , (4.1.5)

The LIP model (4.1.5) is described by a second-order linear dynamical system. It is
worth noticing that the dynamics of the x and y coordinates of the LIPM are completely
decoupled; as a consequence it is possible to focus our analysis on only one component,
then the same observations will hold also for the other. Without loss of generality,
let us define x1 = xLIPx and x2 = ẋLIPx , the state-space representation of the (4.1.5)
writes as ẋ1

ẋ2

 =
 0 1
ζ2 02

 x1

x2

+
 0
−ζ2

pxx = A

x1

x2

+B pxx (4.1.6)

The system has one single equilibrium point given byxe
LIPx

ẋe
LIPx

 :=
pxx

0

 . (4.1.7)

Since the eigenvalues of A are equal to λ1,2 = ±ζ, the equilibrium point is unstable.
Figure 4.1b shows the state-space representation of the dynamics (4.1.6). It is worth
noting that the dynamical system is completely controllable, in fact, the rank of the
controllability matrix R is equal to the dimension of the system. As a consequence, it
is possible to design a control system such that the dynamics (4.1.6) is asymptotically
stabilized.

The LIP model can be extended considering also a finite-sized-foot [Kajita et al.,
2001; Koolen et al., 2012]. In this case, it can be shown that px corresponds to the

Simplified Models for Locomotion 56

position of the zero moment point xZMP [Vukobratović et al., 2004], instead of the
position of the foot.

4.2 The zero moment point

Consider a rigid body that makes a contact with a surface and assume that:

1. there exists an inertial frame I;

2. there exist a frame B rigidly attached to the body and we denote oB the origin
of the frame and [B] its orientation;

3. there exists a contact domain Ω ∈ R3, we denote with Bx a point in the contact
surface expressed in the the frame B;

4. ∀ Bx ∈ Ω there exists a continuous pure force distribution that depends on the
point location, i.e.,

ρ : R3 −→ R3. (4.2.1)

Given the above assumption, the contact torque distribution about a point pB, σoB
:

R3 −→ R3 writes
σoB

= Bx× ρ(Bx). (4.2.2)

Once the pure force and torque distribution are defined, then the equivalent left
trivialized contact 6D force, i.e., in body frame writes as [Caron et al., 2015]

Bf =
Bf

Bµ

 =
 ∫

Ω ρ d Ω∫
Ω σoB

d Ω

 . (4.2.3)

Let us introduce another frame F [B] := (oF , [B]) placed in the contact domain Ω as a
frame that has its origin in oF and is oriented as B. Now we aim to find the origin
oF such that the tangential component of the angular term of F [B]f is equal to zero,
i.e., e⊤

4 F [B]f = e⊤
5 F [B]f = 0. The location of the origin oF is crucial in the study of the

contact dynamic balance, which is achieved by ensuring that the contact area Ω remains
invariant. If oF exists and belongs to the contact domain, i.e., oF ∈ Ω the contact
dynamic balance is ensured and oF is equivalent to the Zero Moment Point (ZMP),
often denoted by xZMP. Otherwise, if oF /∈ Ω, then xZMP is not defined and the rigid
body will rotate. This statement is generally denoted by the ZMP condition [Arakawa
and Fukuda, 1997], also known as the ZMP stability criterion [Li et al., 1998].

Simplified Models for Locomotion 57

Given a 6D force Bf, if the ZMP exists, it is given by [Vukobratović et al., 2004]:

BxZMP =
−Bµy

Bfz

Bµx

Bfz

 . (4.2.4)

The concept of ZMP has been frequently used in robot control [Hirai et al., 1998;
Kajita et al., 2003, 2010; Shih, 1996] as a criterion of postural stability, however, we
observe that:

1. the term zero moment point is misleading since, in general, only two of the three
moments components are zero;

2. even if the ZMP criterion is satisfied, the contact may not be weak contact stable 2.
In fact, the ZMP can be defined, but the pure force F [B]f may not belong to the
friction cone.

Despite these weaknesses of the ZMP condition, the criterion is widely used with the
LIPM where weakly stability of the contact is considered as a hypothesis. Combining
the definition of the ZMP with the LIP the CoM dynamics becomes

ẍLIP = ζ2
(
xLIP − IHB

BxZMP
)
. (4.2.5)

4.2.1 Connection between the ZMP and the centroidal mo-
mentum dynamics

Given a multi-body system that makes a contact with the environment. Consider a
rigidly attached frame to the contact surface B := (oB, [B]) and a frame placed on
the CoM, G[B] := (xCoM, [B]), that has its origin in the center of mass xCoM and is
oriented as B. The centroidal dynamics of the system (3.4.5) is given by

G[B]ḣ =
G[B]ḣ

p

G[B]ḣ
ω

 = G[B]X
B

Bf +mḡ. (4.2.6)

2A contact is weakly stable if an only if [Caron et al., 2015]: i)the relative velocity and acceleration
of the contact are zero, ii) the 6D wrench belongs to the wrench cone.

Simplified Models for Locomotion 58

B

xZMP
xCMP

xCoMBf

Bµ

mg

G[B]ḣ
p

G[B]ḣ
ω

Ω
(a)

B

xZMP= xCMP

xCoM

Bf

Bµ

mg

G[B]ḣ
p

Ω
(b)

Figure 4.2 The CMP is the point at which the ground reaction force must act to
maintain the horizontal component of the centroidal angular momentum constant. The
CMP corresponds with the ZMP when the rate of change of the centroidal angular
momentum is zero - 4.2b. When the centroidal angular momentum is not constant,
the CMP and the ZMP are two different points.

Substituting Bf from (4.2.6) into (4.2.4), we write a relationship between the ZMP and
the centroidal momentum as

BxZMP =

BxCoMx − G[B]ḣ
ω
y

G[B]ḣ
p
z+m∥ḡ∥ −

BxCoMz

G[B]ḣ
p
x

G[B]ḣ
p
z+m∥ḡ∥

BxCoMy + G[B]ḣ
ω
x

G[B]ḣ
p
z+m∥ḡ∥ −

BxCoMz

G[B]ḣ
p
y

G[B]ḣ
p
z+m∥ḡ∥

 . (4.2.7)

4.3 The centroidal moment pivot

Given a multi-body system that interacts with its surroundings. Consider a frame that
is rigidly coupled to the contact surface B := (oB, [B]) and a frame that is positioned
on the CoM. The origin of G[B] := (xCoM, [B]) is at the center of mass xCoM, and is
oriented as B. The Centroidal Moment Pivot (CMP) [Popovic et al., 2005] is defined as
the point where a line parallel to the contact force, passing through the CoM, intersects

Simplified Models for Locomotion 59

the contact surface. More formally, we define the CMP, denoted as xCMP, as

xCMP ∈ R3 such that (BxCMP − BxCoM)× Bf = 0, e⊤
3

BxCMP = 0. (4.3.1)

Expanding Equation (4.3.1), the components BxCMP write as

BxCMPx = BxCoMx −
Bfx

Bfz

xCoMz , (4.3.2a)

BxCMPy = BxCoMy −
Bfy

Bfz

xCoMz , (4.3.2b)
BxCMPz = 0. (4.3.2c)

Combining Equation (4.2.7) with the CMP definition (4.3.2) we can express the CMP
in terms of ZMP location, rate of change of the centroidal angular momentum, and
the ground reaction force as

BxCMPx = BxZMPx + G[B]ḣ
ω
y

Bfz

, (4.3.3a)

BxCMPy = BxZMPy −
G[B]ḣ

ω
x

Bfz

, (4.3.3b)
BxCMPz = 0. (4.3.3c)

To give the reader a better comprehension, we can image the CMP as the point where
the ground reaction force would have to act to keep the horizontal component of the
whole-body angular momentum constant. When the centroidal angular momentum is
constant, i.e., G[B]ḣ

ω = 03×1 the CMP coincides with the ZMP – Figure 4.2. Moreover,
while by definition the ZMP cannot leave the contact domain Ω, the CMP, in the case
of G[B]ḣ

ω
x ̸= 0 or G[B]ḣ

ω
y ̸= 0, can. Let us assume that the motion of the multi-body

system is approximated by the LIPM, i.e., the hypothesis in Section 4.1 holds, then it
is possible to prove that the position of the CMP coincides with the ZMP. To prove
this statement, it is worth noticing that when the hypotheses of the LIPM are satisfied
the centroidal angular momentum is kept constant – Section 4.1, hence, substituting
G[B]ḣ

ω into Equation (4.3.3), we can conclude that if the system is approximated by
the LIPM, then the CMP and ZMP coincide.

Simplified Models for Locomotion 60

4.4 The divergent component of motion

Given a multi-body system making nc contacts with the environment and having a
mass equal to m. Let us consider an inertial frame I := (oI , [I]). Let Ḡ; = (xCoM, [I])
a frame whose origin is located on the CoM of the multi-body system, while the
orientation is parallel to the inertial frame I. The CoM acceleration is given by:

ẍCoM = mg + Ḡf, (4.4.1)

where Ḡf is the sum of all the external forces acting on the robot CoM. The divergent
component of motion (DCM) [Englsberger et al., 2013, 2015a, 2011], often denoted
with ξ, is a linear transformation of the Center of Mass state:

ξ = xCoM + bẋCoM, (4.4.2)

where b ∈ R+ is a strictly positive constant.
By reordering Equation (4.4.2) the CoM dynamics can be derived as

ẋCoM = −1
b
(xCoM − ξ). (4.4.3)

The CoM position is governed by a stable first-order system. It is worth noticing that
given a desired DCM set-point ξ(t) = ξ̄, the CoM position will converge to it, Indeed
let us define the error e as e = xCoM − ξ, the error dynamics is ė = −e/b which is an
asymptotically stable system.

By differentiating (4.4.3) and combining it with (4.4.2) and (4.4.1), the DCM
dynamics holds:

ξ̇ = −1
b
(xCoM − ξ) + bẍCoM (4.4.4a)

= −1
b
(xCoM − ξ) + b

m
(Ḡf +mg). (4.4.4b)

The main idea is to design the external forces to be appropriate for the robot’s
walking task while the feasibility constraints are satisfied (i.e., the center of pressure
inside the support polygon). For the sake of simplicity, a force-to-point transformation
is used to express the external forces:

Ḡf = γ(xCoM − xeCMP), (4.4.5)

Simplified Models for Locomotion 61

where γ is a positive constant and eCMP is the enhanced centroidal moment pivot
point [Englsberger et al., 2013, 2015a]. It is important to point out that the eCMP
is related to the CMP [Popovic et al., 2005]. The first one could not belong to the
ground plane. The second is the intersection point between the ground surface and
the line between the CoM and the eCMP. Combining Equation (4.4.4) with (4.4.5),
we rewrite the DCM as:

ξ̇ =
(
bγ

m
− 1
b

)
xCoM + 1

b
ξ − bγ

m
xeCMP + bg, (4.4.6)

this shows that the states xCoM and ξ are in general coupled, however choosing the
parameter γ equal to m/b2 the DCM dynamics (4.4.6) becomes independent of the
CoM position

ξ̇ = 1
b
ξ − 1

b
xeCMP + bg. (4.4.7)

Let us introduce the virtual repellent point (VPR) as

xVRP = xeCMP + b2g, (4.4.8)

the DCM dynamics can be simplified as:

ξ̇ = 1
b
(ξ − xVRP). (4.4.9)

This shows that the 3D-DCM dynamic equation is a first-order unstable dynamic
system ∀b > 0.

Combining Equation (4.3.2) with (4.4.5), we can express the CMP in terms of the
eCMP and the ground reaction force as:

BxCMPx = BxeCMPx + b2

m
G[B]fx −

G[B]fx

G[B]fz

(
xeCMPz + b2

m
G[B]fz

)
, (4.4.10a)

BxCMPy = BxeCMPy + b2

m
G[B]fy −

G[B]fy

G[B]fz

(
xeCMPz + b2

m
G[B]fz

)
, (4.4.10b)

BxCMPz = 0. (4.4.10c)

Finally, it is worth to notice that while moving the z coordinate of the eCMP will
change, indeed combining (4.3.2) with the CoM dynamics (4.4.1) and projecting it on

Simplified Models for Locomotion 62

the z coordinate we obtain:

xeCMPz = xCoMz − b2 (ẍCoMz + |g|) . (4.4.11)

In other words, if the height of the CoM varies, the height of the eCMP will change
accordingly.

4.4.1 Connection between the DCM and the LIPM

Let us assume that the motion of the multi-body system is approximated by the LIPM,
i.e., the hypothesis in Section 4.1 holds, and b is equal to the inverse of the LIPM time
constant, that is, b = 1/ζ, then it is possible to prove that:

1. the position of the eCMP coincides with the CMP and the ZMP;

2. the z coordinate of the VRP and the DCM coincides with the CoM height.

To prove the first statement, it is worth noticing that we should prove that the eCMP
and the CMP coincide, indeed in Section 4.3, we already show that when the model is
approximated by the LIPM the CMP and ZMP coincide. In the LIPM regime, the z
component of the CoM acceleration is forced to be zero. So subsisting the assumption
in (4.4.11) and making explicit b we obtain:

xeCMPz = xCoMz −
|g|
ζ

= xCoMz −
|g|
|g|
xCoMz = 0. (4.4.12)

Now, substituting (4.4.12) into (4.4.10), we obtain that BxCMP = BxeCMP.
To prove the second statement we can consider the CoM dynamics (4.4.3) projected

on the z coordinate, since ẋCoMz = 0, it becomes evident that ξz = xCoMz = h.
By projecting (4.4.9) on the z coordinate, we have ξ̇z = 1

b
(ξz − xVRPz) = 0, hence

ξz = xVRPz .
Since the DCM dynamics is different from zero only in the planar coordinates, we

define

ξLIP =
e⊤

1

e⊤
2

 ξ, ξLIP ∈ R2, (4.4.13)

We then obtain the CoM and DCM dynamics if the LIP hypotheses are satisfied:

ẋLIP = −ζ (xLIP − ξLIP) , (4.4.14a)
ξ̇LIP = ζ (ξLIP − xZMP) . (4.4.14b)

Simplified Models for Locomotion 63

4.5 The time-varying DCM

Given a multi-body system making nc contacts with the environment and having a
mass equal to m, an inertial frame I := (oI , [I]) and Ḡ := (xCoM, [I]). We previously
show that the DCM dynamics is defined by (4.4.2), where the parameter b is a constant
positive number. The time-varying DCM [Hopkins et al., 2014] extends the DCM
definition [Englsberger et al., 2015a] to account for a natural frequency that changes
over time. Hopkins et al. [2014] define the time-varying DCM as

ξ = xCoM + η(t)ẋCoM. (4.5.1)

where η(t) is a strictly positive function such that η(t) > η̄ > 0 By reordering Equation
(4.5.1) the CoM dynamics can be derived as

ẋCoM = − 1
η(t)(xCoM − ξ). (4.5.2)

The CoM position is governed by an asymptotically stable first-order nonlinear sys-
tem [Hopkins et al., 2014].

By differentiating (4.5.2) and combining it with (4.5.1) and (4.4.1), the Time-
Varying DCM dynamics holds:

ξ̇ = −1
η

(xCoM − ξ)−
η̇

η
(xCoM − ξ) + ηẍCoM (4.5.3a)

=
(

1 + η̇

η

)
(ξ − xCoM) + η

m
(Ḡf +mg) (4.5.3b)

Following the same approach as in Section 4.4, we ask for an external force Ḡf

equal to

Ḡf = m(1 + η̇)
η2 (xCoM − xeCMP), (4.5.4)

we simply select the time-varying DCM dynamics (4.5.3) as:

ξ̇ = η̇ + 1
η

(ξ − xeCMP) + ηg. (4.5.5)

Let us reformulate the virtual repellent point (VPR) (4.4.8) as

xVRP := xeCMP −
η2

η̇ + 1g, (4.5.6)

Simplified Models for Locomotion 64

the DCM dynamics can be simplified as:

ξ̇ = η̇ + 1
η

(ξ − xVRP). (4.5.7)

Note that for a constant parameter η(t) = b and η̇(t) = b, the time-varying DCM dy-
namics (4.5.7) the CoM dynamics (4.5.2) and the VRP definition (4.5.6) are equivalent
to the time-invariant equations (4.4.9) (4.4.3) and (4.4.8), respectively.

We remark that if there exists an instant t∗ such that η(t∗) = 0 or η̇(t∗) = −1,
the dynamics (4.5.2) is uncontrollable. If η(t∗) = 0, Equations (4.5.2), (4.5.5), and
(4.5.4) are not defined. On the other hand, if η̇(t∗) = −1 the sum of the external force
Ḡf becomes zero – Equation (4.5.4). As a consequence, we have to enforce η(t) ≥ ϵη

and η̇(t) ≥ ϵη̇ − 1 where ϵη ϵη̇ are any small positive number. As a consequence, the
aforementioned constraints restrict the application of the time-varying DCM to tasks
that do not consider states where the sum of external force Ḡf is equal to zero, i.e., all
the tasks composed by a flight phase.

We finally highlight that for a choice of η(t) = 1/ω(t) and consequently η̇(t) =
−ω̇(t)/ω(t)2, Equations (4.5.2), (4.5.5) and (4.5.4) are equivalent to the equation
introduced by Hopkins et al. [2014].

Chapter 5

Optimal Control and Non-Linear
Optimization Basics

In previous chapters, we investigated the tools for modeling a floating base system
that establishes a set of contacts with the environment. This chapter introduces the
basics and terminology of non-linear programming and optimal control. We then take
advantage of the technique presented here to design the controllers analyzed in Part II
and Part III. Non-linear programming is the mathematical process of finding a set of
variables such that a non-linear function is minimized (or maximized). Once the theory
of non-linear programming is introduced, we apply it to the resolution of the optimal
control problems. The optimal control theory is a branch of control theory that aims at
finding a control for a dynamic system over a period of time such that an objective
function is optimized.

The chapter will take an utilitaristic approach to describe such frameworks, to
this concern we decided to avoid focusing on the rigorous proofs. The reader who
wants a more rigorous understanding of non-linear optimization theory should consult
the extensive literature. Here, it is worth mentioning [Boyd and Vandenberghe, 2004;
Chachuat, 2007; Diehl et al., 2009] from which parts of this chapter took inspiration.
On the other hand, complete and rigorous manuscripts on optimal control are [Allgöwer
et al., 1999; Bemporad et al., 2002; Biral et al., 2016; Boyd and Vandenberghe, 2004;
Qin and Badgwell, 2000].

The chapter is organized as follows. Sections 5.1 and 5.2 give an overview of
convex sets and convex functions, respectively. Section 5.3 introduces the optimization
problem. Section 5.4 presents the Quadratic Programming problem as a special case of
the optimization problem. The Quadratic Programming problem will be extensively

Optimal Control and Non-Linear Optimization Basics 66

exploited in the design of the whole-body controllers presented in Part II. Section 5.5
and 5.6 introduce some of the basics of Optimal Control and Model Predictive Control.
The content of Section 5.6 will be crucial to fully comprehend the design of the
controllers detailed in Part III.

5.1 Convex set

5.1.1 Affine and convex sets

Given two points, x1, x2 in a set Rn such that x1 ̸= x2, we define y ∈ Rn the line
passing through x1 and x2 as

y = θx1 + (1− θ)x2, (5.1.1)

where θ ∈ R. When θ = 1, y coincides with x1, while if θ = 0, y = x2. A set C is
affine if given two distinct points in C the line connecting them belongs to C, i.e., for
any x1, x2 ∈ C, and theta = [0, 1] then θx1 + (1 − θ)x2 ∈ C. Given a set of points
x1, x2, . . . , xn, we define the affine combination of x1, x2, . . . , xn, θ1x1 +θ2x2 +· · ·+θnxn

where θ1 + θ2 + · · ·+ θn = 1 and θi ≥ 0 for i = 1, . . . , n.

Convex sets

A set C is said to be convex if the line segment between two points in C belongs to C.
More formally, given any x1, x2 ∈ C and any θ such that 0 ≤ θ ≤ 1 θx1 + (1− θ)x2 ∈ C.
To give the reader a better understanding, a set is convex if every point in the set can
be connected with an unobstructed straight path between them. Figure 5.1a illustrates
an example of a convex set, while Figure 5.1b presents an example of a nonconvex set.

Given n points, x1, x2, . . . , xn, and θ1, θ2, . . . , θn ∈ R such that θ1 + θ2 + · · ·+ θn = 1
and θi ≥ 0 for i = 1, . . . , n, the convex combination of x1, x2, . . . , xn is given by
θ1x1 + θ2x2 + · · ·+ θnxn.

The convex hull of a set C, denoted with convC, is the set of all the convex
combinations of the points in C and it is written as:

convC =
{
θ1x1 + θ2x2 + · · ·+ θnxn|xi ∈ C, θi ≥ 0, i = 1, . . . , n,

n∑
i=1

θi = 1
}
.

(5.1.2)
Here we underline that the convex hull of C is a convex set

Optimal Control and Non-Linear Optimization Basics 67

x2

x1

(a) Convex set.

x1

x2x3

(b) Nonconvex set.

Figure 5.1 Examples of convex and nonconvex sets. (a) The oval shape is a convex set
(b) The ’s’ shaped set is not convex, since the red line segment between x1 and x2 in
not fully contained in the set.

Convex cones

A set C is cone if for every point x ∈ C and a real positive parameter θ ≥ 0, θx ∈ C.
Given a cone C, if it is convex, we say that C is a convex cone, thus for any x1, x2 ∈ C
and θ1, θ2 ≥ 0 the affine combination of x1, x2 belongs to C, i.e θ1x1 + θ2x2 ∈ C.

Given n points x1, x2, . . . , xn, and θ1, θ2, . . . , θn ∈ R such that θi ≥ 0 for i = 1, . . . , n,
the conic combination of x1, x2, . . . , xn is given by θ1x1 + θ2x2 + · · ·+ θnxn. Here, it is
worth recalling that if xi is in a convex cone C, then every conic combination of xi

belongs in C The conic hull of a set C, denoted by conicC, is the set of all the conic
combinations of the points in C and it writes as:

conicC = {θ1x1 + θ2x2 + · · ·+ θnxn|xi ∈ C, θi ≥ 0, i = 1, . . . , n} . (5.1.3)

5.1.2 Convex set examples

In this section, we recall some important examples of convex sets that we will encounter
throughout the rest of the manuscript. We first introduce the hyperplanes, halfspaces
and then second-order cones, also known as Lorentz cones. We conclude the section by
presenting the polyhedra and the associated Minkowski-Weyl theorem.

Hyperplanes and halfspaces

Given a set H, we say that H is an Hyperplane if it can be represented in the form

H = {x ∈ Rn|a⊤x = b}, (5.1.4)

Optimal Control and Non-Linear Optimization Basics 68

where a ∈ Rn and b is a real number. The hyperplane representation can be seen
as the set of points with a constant scalar product with a vector a. Similarly, a
can be seen as the normal vector of the plane. b is the offset of the plane from the
origin. Given any point x0 in the hyperplane, Equation (5.1.4) can be rewritten as
{x ∈ Rn|a⊤(x− x0) = 0}

A hyperplane splits the space into two halfspaces. We define a closed halfspace as
the convex set {x ∈ Rn|a⊤x ≤ b}. We note that the halspace a⊤x ≥ b is the halfspace
extending in the direction of the vector a, while a⊤x ≤ b contains −a – see Figure 5.3a.

Second order cone

Given a vector x ∈ Rn, the Euclidean norm in Rn ∥ ∥ and a positive scalar t, we define
the second order cone as

Qn+1=

x
t

 ∈ Rn+1

∣∣∣∣∣∣ ∥x∥ ≤ t

 (5.1.5a)

=

x
t

 ∈ Rn+1

∣∣∣∣∣∣
x
t

⊤ In 0n×1

01×n −1

x
t

 ≤ 0, t ≥ 0

 . (5.1.5b)

The second-order cone, often named Lorentz cone, is a convex cone.
We notice that, in the context of rigid contact modeling, the friction cone (Equa-

tion (4.1.1)) is a Lorentz cone. Indeed, given the point in contact with the environment
and a contact force f ∈ R3, we say that f belongs to the friction cone if and only if

√
f 2

1 + f 2
2 ≤ µf3, (5.1.6)

where µ is the static friction coefficient, or in other words,

f ∈
{
f ∈ R3 |

√
f 2

1 + f 2
2 ≤ µf3

}
. (5.1.7)

Setting µf3 = t and x⊤ =
[
f1 f2

]
, Equation (5.1.7) is equivalent to (5.1.5). Thus, we

can conclude that the friction cone is an example of the Lorenz cone.

Optimal Control and Non-Linear Optimization Basics 69

P

a1

a2

a3

a4

(a)

P
a1

a2

(b)

P

a1

a2

a3

a4

a5

a6

(c)

Figure 5.2 Examples of polyherda. The orange circle denotes the vertices of the
polyhedra, while the green arrows the rays. (a) The V-rep of a generic polyhedron is
composed by vertices and rays. (b) A polyhedral cone is described by rays. (c) The
V-rep of a polytope consist in vertices only

Polyhedra

We define a polyhedron, denoted as P , as the solution set of a finite number of linear
inequalities and equalities such that:

P = {x | a⊤
i x ≤ bi, i = 1, . . . ,m, c⊤

j x = dj j = 1, . . . , n}. (5.1.8)

Often the equalities c⊤
j x = dj are not considered in the polyhedron formulation. In

fact, equality can always be replaced with two inequalities, for instance c⊤
j x = dj is

equivalent to c⊤
j x ≤ dj and −c⊤

j x ≤ −dj. Considering this, in the following we will
remove the equality terms from the polyhedron definition. Thus we write (5.1.8) as

P = {x | a⊤
i x ≤ bi, i = 1, . . . , k}, (5.1.9)

where k = m+ 2n. It is worth noting that a polyhedron can be seen as the intersection
of finite halfspaces and hyperplanes. Hereafter, we call a bounded polyhedron polytope.
Figure 5.2a illustrates an example of a polyhedron, while Figure 5.2c a polytope.
Equation (5.1.9) is often written in a more compact from as

P = {x | Ax ⪯ b}, (5.1.10)

Optimal Control and Non-Linear Optimization Basics 70

a⊤x = b

x0

a

x

(a) Geometric representation of a hyperplane.

a⊤x < b

a⊤x > b

a⊤x = b

(b) Halfspaces generated by a hyperplane.

Figure 5.3 Geometric representation of a hyperplane and the associated halfspaces.
(a) An hyperplane in R3. The plane is uniquelly determinated by a vector a normal
to the plane and a point x0, for ant point x in the plane different from x0, x− x0 is
orthogonal to a. (b) The halfspace determinated by a⊤x ≥ b contains the vector a,
while the halfspace described by a⊤x ≤ b extends in the direction −a

where b =
[
b1 . . . bm

]⊤
. While A is given by

A =

a⊤

1
...
a⊤

m

 . (5.1.11)

In Equation (5.1.10), ⪯ denotes the component-wise inequality in Rm, i.e., x ⪯ y if
and only if xi ≤ yi for each i = 1, . . . ,m. If the polyhedron P is described by a null
vector b, the set is called polyhedral cone – Figure 5.2b. The linear approximation
of a friction cone is an example of a polyhedral cone. Equation (5.1.10) is often
denoted as halfspace representation, or shortly H-rep of a polyhedron. Given a
polyhedron, the halfspace representation is not unique. For a H-rep polyhedron
P = {x | Ax ⪯ b} an i-th inequality is said to be redundant for P if its removal
preserves the polyhedron [Bemporad et al., 2001]

P = {x | Ax ⪯ b} = {x | Ajx ≤ bj, ∀j ̸= i}. (5.1.12)

If none of the inequalities is redundant, then H-rep is said to be minimal halfspace
representation.

We can describe a polyhedron P in terms of points, denoted vertices and generating
vectors, often named rays. This description is often called vertex representation, or

Optimal Control and Non-Linear Optimization Basics 71

V-rep. It is worth mentioning that if a polyhedron is described only by vertices it is a
polytope, while if only rays are required, the polyhedron is a polyhedral cone. Formally,
the vertex representation of a polyhedron P writes as

P=
{
θ1v1 + · · ·+ θmvm + · · ·+ θkvk

∣∣∣∣∣
m∑

i=1
θi = 1, θi ≥ 0 i = 1, . . . , k

}
(5.1.13a)

= conv{v1, . . . , vm} ⊕ conic{vm+1, . . . , vk} (5.1.13b)

where ⊕ indicates the Minkowski sum.
Figure 5.2 illustrates the vertex representation in case of polyhedron 5.2a, cone

5.2b and polytope 5.2c.

Minkowski-Weyl theorem We now state, without proving, one of the most impor-
tant results of the convex polyhedral theory, the Minkowski-Weyl theorem. Given a set
P ⊆ Rn. Then the following are equivalent:

1. H-rep: There exist a matrix A ∈ Rm×n and a vector b ∈ Rn such that P =
{x | Ax ⪯ b}.

2. V-rep: There exist two finite sets V,R ⊆ Rn such that P = convV ⊕ conicR .

To give the reader a better understanding of the implications of this theorem, we recall
some advantages of the H-rep and V-rep representations. For example, testing if a
vector belongs to a polyhedron is trivial if P is expressed in the H-rep, while it becomes
more complex in the V-rep. On the other hand, we can exploit the V-rep when we want
to compute the linear combination of a vector x ∈ P. For instance, given x ∈ P and
y = Ax, then y belongs to a polyhedron, y ∈ PA if and only if x ∈ P , if x is expressed
with the V-rep description, i.e x = θ∗

1v1 + · · ·+θ∗
mvm + · · ·+θ∗

kvk = VΘ∗, then y is equal
to y = AVΘ∗ ∈ PA. We name vertex enumeration problem the conversion from the
H-rep to the V-rep. The dual transformation problem of a V-rep to a minimal H-rep
is often called facet enumeration problem or (convex) hull problem. Both problems
can be solved by applying the double description method [Fukuda and Prodon, 1995;
Motzkin et al., 1953].

5.2 Convex function

Given a function f : Rn → R, we say that f is convex if

Optimal Control and Non-Linear Optimization Basics 72

f(y)

f(x) + ∇xf(x)⊤ (y − x)

(x, f(x))

(a) Convex function.

f(y)

f(x) + ∇xf(x)⊤ (y − x)

(x, f(x))

x1
x2

(b) Nonconvex function.

Figure 5.4 Examples of convex and nonconvex functions. (a) Plot of a convex function.
f(y) lies above the first order approximation of f at x. (b) Graph of a nonconvex
function. The chord between x1 and x2 intersects the plot. Furthermore, the linear
approximation of f intersects the graph.

1. the domain of f , denoted with dom(f) is a convex set;

2. for all x1, x2 ∈ dom(f) and 0 ≤ θ ≤ 1 we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2). (5.2.1)

To give the reader a better understanding, we can imagine drawing a chord from any
x1 to y1, if it lies above the graph of f , f is convex. A function f is strictly convex, if
for x1 ̸= x2 and 0 < θ < 1, we have f(θx1 + (1− θ)x2) < θf(x1) + (1− θ)f(x2). If −f
is (strictly) convex, then f is said to be (strictly) concave. Figure 5.4 illustrates an
example of convex and nonconvex functions.

5.2.1 First and second order conditions for the convexity

Let assume a differentiable function f : Rn → R, and let us define ∇xf(x) as the
gradient of f

∇xf(x)⊤ =
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

,
]

(5.2.2)

then the first-order condition for the convexity state that if f is convex if and only if
dom(f) is convex and f(y) ≥ f(x) +∇xf(x)⊤(y − x) for any x and y in the domain
of f . Figure 5.4a illustrates the geometrical representation of the condition. Given a
first-order Taylor approximation of the function f at x, then the function is convex
only if its value is always greater than the approximation. It is worth noticing that if
∇xf(x) = 0n×1 and f are convex, for the first-order condition we have that for any
y ∈ dom(f) f(y) ≥ f(x), consequently x is a global minimizer of f . In the case where

Optimal Control and Non-Linear Optimization Basics 73

f is strictly convex, it is possible to prove that ∇xf(x) = 0n×1 implies that x is the
only global minimizer of f .

Let us now assume that f is twice differentiable and given Hessian ∇2
xf(x) as

∇2
xf(x) =

∂f
∂x2

1

∂f
∂x1∂x2

. . . ∂f
∂x1∂xn

∂f
∂x2∂x1

∂f
∂x2

2
. . . ∂f

∂x2∂xn

...
∂f

∂xn∂x1
∂f

∂xn∂x2
. . . ∂f

∂x2
n

 . (5.2.3)

Then f is convex if and only if the domain of f is convex and the Hessian is a positive
semidefinite matrix, commonly denoted with ∇2

xf(x) ⪰ 0. This condition is often
called second-order condition for the convexity. Similarly, f is concave if and only if the
domain of f is convex and ∇2

xf(x) ⪯ 0, the Hessian is a negative semidefinite matrix.
Here, it is important to recall that even if ∇2

xf(x) ≻ 0 implies that f is strictly convex,
the converse does not hold.

Due to the second-order condition, we can easily check if a quadratic function is
convex. The quadratic functions play an important role in the optimization, indeed
as shown in the next chapters, the cost functions considered in this thesis are often
quadratic. Given a function f : Rn → R, we say that f is quadratic if it can be
expressed as:

f(x) = x⊤Px+ q⊤x. (5.2.4)

It is easy to prove that the Hessian of f is P while the gradient is q. If P ⪰ 0, then f
is said to be a convex quadratic function. As shown in Section 5.4, the minimization
of a quadratic function leads to a huge class of optimization problems called Quadratic
Programming (QP) problems.

5.3 Optimization problem

Given a set Z called optimization problem domain, and a set of admissible variables
denoted with S ⊆ Z, such that the decision variables x belongs to S, i.e. x ∈ S, we
define the cost function f : Z → R such that each decision variable x has a given cost.
We formulate a mathematical optimization problem, or just optimization problem as

minimize
x

f(x) (5.3.1a)
subj. to x ∈ S ⊆ Z. (5.3.1b)

Optimal Control and Non-Linear Optimization Basics 74

S

optimal solution: x∗

g1(x)

g2(x) g3(x)

f(x)

Figure 5.5 Graphic representation of an optimization problem. The ellipses represent
the level sets of the cost function f(x). g1(x), g2(x) and g3(x) are the inequalities
constraints that define the feasible set S. x∗ is the optimal solution of the problem.
Since x∗ belongs to the curve g1(x) = 0 we can conclude that the first constraint is
active at the optimal solution.

If the optimization problem (5.3.1) has a solution, we define the primal optimal value
of the problem (5.3.1), denoted as f ∗ as the least possible cost as

f ∗ = inf
x∈S

f(x), (5.3.2)

such that for all x ∈ S, f(x) ≥ f ∗. If f ∗ → −∞, we say that the problem is unbounded
below. If S = Z the problem is said to be unconstrained. If S is empty, the problem is
infeasible.

The optimal solution x∗ is defined as the decision variable whose cost is associated
with the optimal value f ∗, i.e., x∗ ∈ S with f(x∗) = f ∗. If x∗ exists, then we can
rewrite Equation (5.3.2) as

f ∗ = min
x∈S

f(x) = f(x∗), (5.3.3)

x∗ is often called global optimizer or optimal solution of the optimization problem.
In this manuscript, we consider only optimization problems whose domain Z is a sub-

set of the finite-dimensional Euclidean vector space Rn. Consequently, Equation (5.3.1)

Optimal Control and Non-Linear Optimization Basics 75

can be rewritten as

minimize
x

f(x) (5.3.4a)
subj. to g(x) ⪯ 0m×1 (5.3.4b)

h(x) = 0p×1 (5.3.4c)
x ∈ Z, (5.3.4d)

where f : Rn → R is the cost function, g : Rn → Rm represents the inequality
constraints and h : Rn → Rp the equalities. Z is given by the intersection of the
domains of f , g and h.

Consider a feasible point x̄. We say that the i-th inequality constraint gi(x) ≤ 0
is active if gi(x̄) = 0, on the other hand, if gi(z̄) < 0 the constraint is said to be
inactive. It is worth noting that an equality constraint is always active for all feasible
points. Similarly to what is discussed regarding the polyhedral in Section 5.1.2, a set
of constraints is redundant if by removing one of the constraints, the feasible set S
remains invariant.

Often the inequalities h(x) = 0 are not considered in the optimization problem
formulation; indeed, an equality constraint can always be replaced by two inequalities;
otherwise, another possibility is to parameterize the solution of the equality constraint.
More details can be found in [Borrelli et al., 2017, Chapter 1.1.1].

5.3.1 The optimality conditions for unconstrained problems

Given an unconstrained problem of the form

minimize
x

f(x). (5.3.5)

If f : Rn → R is twice differentiable, then it is possible to prove that if x∗ is a local
minimizer, then the gradient of f at x∗ is equal to zero, i.e., ∇xf(x∗) = 0n×1 and the
Hessian matrix is positive semidefinite ∇2

xf(x∗) ⪰ 0. If the function f is convex, then
x∗ is a the global minimizer if and only if ∇xf(x∗) = 0n×1.

This optimality condition plays an important role in solving the least square
problems. Given A ∈ Rn×m and b ∈ Rm, the objective of a least square problem is to
find the optimal solution of Ax = b such that the square norm of Ax− b is minimized.

Optimal Control and Non-Linear Optimization Basics 76

The problem can be framed within the optimization framework with the aim of solving

minimize
x

(Ax− b)⊤(Ax− b). (5.3.6)

Since the squared norm is a convex function, finding the minimum can be achieved by
setting the gradient of (Ax− b)⊤(Ax− b) to zero:

∇x

[
(Ax− b)⊤(Ax− b)

]
= −2A⊤b+ 2A⊤Ax = 0, (5.3.7)

whose solution is given by x∗ = (A⊤A)−1A⊤b.

5.3.2 Lagrange duality theory

Lagrangian function Given an optimization problem of the form (5.3.4) we define
the Lagrangian function L : Rn × Rm × Rp → R as

L(x, λ, µ) = f(x)− λ⊤g(x)− µ⊤h(x), (5.3.8)

where λ ∈ Rm and µ ∈ Rp are the Langrange multipliers or dual variables. In this
context, the optimization problem (5.3.4) is often denoted as primal optimization
problem, or shortly primal problem We recall that if x̄ is a feasible point for the primal
problem (5.3.4) and µ ⪰ 0, then L(x̄, λ, µ) ≤ f(X̄).

Lagrange dual function Given the Lagrangian function L, we define the Lagrange
dual function, or simply dual function, as the unconstrained infimum of the Lagrangian
over x, for fixed multipliers λ and µ and it writes as

g(λ, µ) = inf
x∈Rn
L(x, λ, µ). (5.3.9)

When the Lagrangian is unbounded below in x, the dual function takes the value −∞,
in this case, we say that the pair (λ, µ) is dual infeasible. In the other case, the pair
(λ, µ) is dual feasible. We now state two important properties of the dual function

1. the dual function is concave even when the original problem is not convex [Boyd
and Vandenberghe, 2004, Chapter 5.1.2];

Optimal Control and Non-Linear Optimization Basics 77

2. the dual function g(λ, µ) is a lower bound on the optimal value p∗ of the primal
problem (5.3.4), indeed, for any µ and λ ⪰ 0 we have

g(λ, µ) ≤ p∗. (5.3.10)

When the pair (λ, µ) is dual feasible, the latest statement gives a non-trivial lower
bound on p∗.

Lagrangian dual problem Equation (5.3.10) states that the Lagrangian dual func-
tion is a lower bound on the optimal problem p∗. Now we aim to find the greatest value
of the upper bound. This problem is often called Lagrangian dual problem associated
with the optimization problem (5.3.4), and is written as

maximize
λ,µ

g(λ, µ) (5.3.11a)

subj. to λ ⪰ 0m×1. (5.3.11b)

The pair (λ, µ) is dual feasible if λ ⪰ 0m×1 and g(λ, µ) ≥ −∞. We call dual optimal or
optimal Lagrange multipliers and denoted with (λ∗, µ∗) the optimal solution of (5.3.11).
We finally denoted with d∗ the optimal value of the Lagrange dual problem (5.3.11) as

d∗ = g(λ∗, µ∗) = inf
x

(
f(x) + λ∗⊤

g(x) + µ∗⊤
h(x)

)
. (5.3.12)

Weak duality Given d∗ and p∗ the dual and primal optimal value, respectively, then
we have

d∗ ≤ f ∗. (5.3.13)

This condition is called weak duality. The difference f ∗ − d∗ is called optimal duality
gap or duality gap.

Strong duality If d∗ = f ∗, the duality gap is zero, and we can conclude that the
strong duality holds. Strong duality does not hold in general, however, there exist
conditions on the primal problem which imply the strong duality. Here, it is worth
mentioning Slater’s condition [Boyd and Vandenberghe, 2004, Chapter 5.2.7].

Certificate of optimiality Given the primal optimal problem (5.3.4) and its
dual (5.3.11), the cost function f evaluated at any feasible point x̂ is an upper bound

Optimal Control and Non-Linear Optimization Basics 78

of the primal optimal value p∗, indeed we have g(λ, µ) ≤ d∗ ≤ p∗ ≤ f(x̂). We say that
x̂ is ϵ-suboptimal with ϵ = f(x̂)− g(λ, µ). In this scenario, the pair (λ, µ) is also called
a certificate since it proves the suboptimality of x̄. Several optimization algorithms
iteratively solve the primal and dual optimization problem until a given value of ϵ is
reached.

Complementary slackness Let us consider the primal optimal problem (5.3.4) and
its dual (5.3.11) and assume that the string duality holds. Let x∗ the primal optimal
value and (λ∗, µ∗) the dual optimal point. This means that

f(x∗) = g(λ∗, µ∗) (5.3.14a)
= inf

x
(f0(x) + λ∗⊤

g(x) + µ∗⊤
h(x) (5.3.14b)

≤ f(x∗) + λ∗⊤
g(x∗) + µ∗⊤

h(x∗) (5.3.14c)
≤ f(x∗). (5.3.14d)

Equation (5.3.14a) consists of the strong duality property, while (5.3.14b) is the
definition of the dual optimal function (5.3.12). If the inf of the optimal function is
equal to the inequality (5.3.14c) is actually an equality if a feasible x∗ exists. We can
now conclude that

f(x∗) = f(x∗) + λ∗⊤
g(x∗) + µ∗⊤

h(x∗). (5.3.15)

Since x∗ its a feasible value, h(x∗) = 0, as a consequence µ∗ is different from zero. On
the other hand, Equation (5.3.15), implies λ∗⊤

g(x∗) = 0. This condition is known as
complementary slackness and it holds for any primal optimal value x∗ and any dual
optimal pair (λ∗, µ∗). Given an inequality constraint gi(x∗) evaluated at the optimal
value and its associated dual optimal variable λ∗

i , the complementary slackness is
resumed in these two following implications

1. if λ∗
i > 0 then gi(x∗) = 0;

2. if gi(x∗) < 0 then λ∗
i = 0.

In other words, the i-th optimal Lagrange multiplier is zero unless the i-th constraint
is active at the optimum, i.e., for x = x∗.

Optimal Control and Non-Linear Optimization Basics 79

5.3.3 Karush-Kuhn-Tucker Conditions

Let us assume that the cost function f , the equality constraints h and the inequality
constraints g functions are differentiable, Equation (5.3.12) is satisfied only if the
gradient of the Lagrange function L(x, λ∗, µ∗) must be zero at x∗:

∇xf(x∗) + λ∗⊤∇xg(x∗) + µ∗⊤∇xh(x∗) = 0. (5.3.16)

We can summarize the condition (5.3.16) with the consideration done in the above set
of inequalities and equalities

∇xf(x∗) + λ∗⊤∇xg(x∗) + µ∗⊤∇xh(x∗)= 0 (5.3.17a)
λ∗⊤

g(x∗)= 0 (5.3.17b)
λ∗⪰ 0m×1 (5.3.17c)

g(x∗)⪯ 0m×1 (5.3.17d)
h(x∗)= 0m×1. (5.3.17e)

The conditions in (5.3.17) are called Karush-Kuhn-Tucker (KKT) conditions. The
KKT conditions are necessary conditions for any primal-dual optimal pair if strong
duality holds and the cost and constraints are differentiable. If the primal problem is
also convex, then the KKT conditions are also sufficient.

Linear Independence Constraint Qualification

Consider an optimization problem of the form (5.3.4) and let Iac(x̄) the set of active
constraints. Then, the Linear Independence Constraint Qualification (LICQ) is sat-
isfied at x̄ if the set of the active constraint gradients is linearly independent. We
notice that several optimization algorithms solve the problem by relying on the linear
independence constraint qualification (LICQ) [Betts, 2010]. Indeed, the LICQ allows
for the characterization of the set of all possible directions required to solve a constraint
nonlinear optimization problem.

5.4 Quadratic Programming

The optimization problem (5.3.4) is called a quadratic program (QP) if the objective
is convex quadratic and the constrain functions are affine. We express a quadratic

Optimal Control and Non-Linear Optimization Basics 80

S

x∗
1
2 x

⊤Px+ q⊤x+ r

(a) Optimizer on boundary of S.

S

x∗
1
2 x

⊤Px+ q⊤x+ r

(b) Optimizer in interior of S.

Figure 5.6 Geometric interpretation of the QP solution. (a) The solution belongs
to the boundary of P . One of the constraint is active (green line). (b) The solution
belongs to the interior of P . In this case, x∗ = −P−1q.

program problem in the following form:

minimize
x

1
2x

⊤Px+ q⊤x+ r (5.4.1a)
subj. to Gx ⪯ h. (5.4.1b)

x ∈ Rn, P ≻ 0 is a positive definite matrix, q ∈ Rn, G ∈ Rm×n, h ∈ Rm and r ∈ R. If
the set S = {x|Gx ⪯ h} is not empty, the solution exists and is unique. Figure (5.6)
illustrates the solution of a QP problem. In Figure (5.6a) the optimal solution belongs
to the boundary of the feasible set S, while in Figure (5.6b) the solution belongs to
the interior of S. In this case, the optimization problem (5.4.1) is equivalent to an
unconstrained optimization problem. Since the cost function is quadratic and hence
convex, the optimal solution is given by setting the gradient of 1

2x
⊤Px+ q⊤x+ r to

zero:
∇x

[1
2x

⊤Px+ q⊤x+ r
]

= 0, (5.4.2)

whose solution is given by x∗ = −P−1q.

Dual of QP Consider (5.4.1) the Lagrange function (5.3.8) is given by

L(x, λ) = x⊤Px+ q⊤x− λ⊤ [Gx− h] , (5.4.3)

Optimal Control and Non-Linear Optimization Basics 81

The dual cost (5.3.9) is obtained by minimizing the Lagrange function (5.4.3) with
respect to x

g(λ) = min
x

{
x⊤Px+ q⊤x− λ⊤ [Gx− h]

}
, (5.4.4)

For a given λ, the Lagrange function (5.4.3) is convex, consequently the dual cost (5.4.4)
is obtained by setting the gradient of (5.4.3) equal to zero. We then have

x = −P−1
(
q +G⊤λ

)
. (5.4.5)

Finally, the dual problem (5.3.11) is given by substituting (5.4.5) into (5.4.4) and
computing the maximum for λ ⪰ 0m×1 as

minimize
λ

1
2λ

⊤(GP−1G⊤)λ+ λ⊤(h−GP−1q) + 1
2q

⊤H−1q (5.4.6a)
subj. to λ ⪰ 0m×1. (5.4.6b)

The dual of a QP problem is a QP problem itself.

KKT of QP Given a QP problem (5.4.3) the KKT conditions (5.3.17) become

Px+ q +G⊤λ= 0 (5.4.7a)
λ∗⊤(Gx− h)= 0 (5.4.7b)

λ∗⪰ 0m×1 (5.4.7c)
Gx− h⪯ 0m×1. (5.4.7d)

5.5 Optimal control

Let us consider a dynamical system

ẋ(t) = f(x(t), u(t), t), (5.5.1)

where x(t) ∈ Rn is the state of the dynamical system and u(t) ∈ U ⊆ Rm is the control
input. Our aim is to determine the evolution of the system given an initial value
x(0) = x0. Such a problem is often known as Initial Value Problem, denoted as IVP. If
the terminal condition is also specified, x(tf) = xf , we name the problem Boundary
Value Problem (BVT).

Optimal Control and Non-Linear Optimization Basics 82

If the control input u(t) is known and is sufficiently regular, the IVP has an unique
solution that depends on the control history u(t).

In more complex scenarios, the dynamical system (5.5.1) is extended with a set of
algebraic constraints of the form

c(x(t), u(t), t) ≤ 0nc×1. (5.5.2)

The dynamical system (5.5.1) together with (5.5.2) define a Differential Algebraic
Equation (DAE).

Let us now introduce a cost function whose purpose is to evaluate the performance
index of a control input sequence u in a closed interval t ∈ [t0, tf]. We define a
performance functional index, or simply cost function, denoted as J (x0, u(.), t) as:

J (x0, u(.), t) = β(x(tf), tf) +
∫ tf

t0
ℓ (x(τ), u(τ), τ) d τ, (5.5.3)

where β(x(tf), tf) is called Mayer term and weighs the terminal state. While ℓ (x(τ), u(τ), τ)
is the Lagrange term. The Mayer term is also known as terminal cost, and weighs the
state of the system at t = tf . On the other hand, the Lagrange term, also known as
running cost, weighs the path to reach the final state.

Combining the dynamical system (5.5.1), the algebraic constraint (5.5.2), and the
cost function (5.5.3) we define the optimal control problem (OCP) as follows

minimize
u∈U

β(x(tf), tf) +
∫ tf

t0
ℓ (x(τ), u(τ), τ) d τ (5.5.4a)

subj. to ẋ(t) = f(x(t), u(t), t) t ∈ [t0, tf] (5.5.4b)
c(x(t), u(t), t) ≤ 0nc×1 t ∈ [t0, tf] (5.5.4c)
x(t0) = x0. (5.5.4d)

The optimal control problem (5.5.4) is known as Bolza optimization problem. We
recall that an OCP can be written in three forms, namely: Bolza, Mayer and Lagrange
forms. They apparently differ in the formulation of the functional to be optimized, but
it is worth noticing that they are equivalent and that it is possible to convert each
problem into the other two forms. If the integral term in the cost function (5.5.4a) is
set to zero, the problem is said to be written in Mayer form. On the other hand, if the
terminal cost in (5.5.4a) is set to zero, the problem is in Lagrange form.

Optimal Control and Non-Linear Optimization Basics 83

The OCP (5.5.4) is normally solved by applying three different strategies. The
dynamic programming [Bellman, 1952; Tawiah and Song, 2021], the indirect meth-
ods [Bertolazzi et al., 2005; Liberzon, 2012; Pontriagin, 1962] or the direct methods [Betts,
2010].

Dynamic programming The dynamic programming (DP) methodology attempts
to analytically find the optimal control strategy by breaking the OCP into smaller
subproblems applying the Bellman’s principle of optimality [Bellman, 1952; Dreyfus,
2002; Gross, 2016]:

An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first
decision.

Since we do not exploit the dynamic programming techniques for the rest of the thesis,
we avoid further discussing these methods.

Indirect methods The indirect methods are another class of analytical optimization
methods. Unlike DP, they rely on the Pontryagin’s minimum principle [Kirk, 1970,
Section 5.3] to compute the optimality conditions. The methods exploit the Hamiltonian
function introduced for the Hamilton-Jacobi-Bellman equation to reduce the solution
of the OCP to the solution of a 2n equations given in the form of a two-point boundary
value problem. Since we do not exploit Indirect methodsfor the rest of the thesis, we
will not further discuss them.

Direct methods Finally, in the direct method approach, the OCP is discretized,
transcribed into a nonlinear programming problem, and finally solved numerically.

In this thesis, we approach the OCP only by applying direct methods. Section 5.5.1
presents the common integration methods exploited to convert the continuous dynam-
ics (5.5.1) into a discrete one of the form

x(t+ δt) = Γ(x(t), u(t), t). (5.5.5)

5.5.1 Direct methods

Given an optimization problem (5.5.4), our objective is to transcribe it into a nonlinear
programming problem of the form (5.3.1). Even if the formulation in (5.5.4) seems to

Optimal Control and Non-Linear Optimization Basics 84

be similar to (5.3.1), it is worth recalling some main differences. In an OCP, we seek a
control strategy u(t) where t belongs to a close interval. u(t) is in general a function that
may depend on the state of the system. On the other hand, the outcome of a nonlinear
optimization problem (5.3.1) is just a sequence of control actions. Furthermore, the
nonlinear optimization problem (5.3.1) is completely agnostic to the concept of time
evolution of the dynamical system (5.5.1). These two main differences are overcome
by discretizing the dynamics of the continuous system.

Discretization of the dynamical system

We call the solution of the dynamics equation (5.5.1), the state transition function

x(t) = ϕ(x0, t0, u). (5.5.6)

We want to transform it into discrete difference equations, suitable for numerical
computing. We now introduce the notation xk as the value of a variable x evaluated at
t0 + k d t, i.e., xk = x(t0 + k d t). We approximate the state evolution of (5.5.1) with

xk+1 = Γ (xk, uk, k) . (5.5.7)

where Γ : Rn × Rm × N→ Rn. It is worth noting that, by recursively applying (5.5.7)
from k = 0 to k = N , (5.5.7) is the discrete approximation of (5.5.6). N = (tf − t0)/ d t
is often denoted as time horizon.

Forward Euler The most common single-step method is the forward Euler integra-
tion scheme:

xk+1 = xk + d tf (xk, uk, tk) . (5.5.8)

It is worth noting that, for sufficiently high d t, the forward Euler method is subject to
numerical instability.

Backward Euler Given a dynamical system (5.5.1) the backward Euler method
gives the following approximation

xk+1 = xk + d tf (xk+1, uk+1, tk+1) . (5.5.9)

The backward Euler is an implicit single step method. As a consequence, it is nu-
merically stable independently from the chosen time step [Ascher et al., 1997]. Given

Optimal Control and Non-Linear Optimization Basics 85

the presence of xk+1 in both sizes of (5.5.9) it would be necessary to numerically
solve (5.5.9) to find an explicit expression of xk+1 as a function of xk, uk, and tk.

Tustin integration method The Tustin integration also known trapezoidal method
is another implicit method of the form:

xk+1 = xk + d t
2 [f (kk, uk, tk) + f (xk+1, uk+1, tk+1)] . (5.5.10)

Unlike Euler’s methods, the trapezoidal method considers the dynamics at two time
instants, k and k + 1. For this reason, the trapezoidal method is considered a multiple
collocations method. We finally recall that the trapezoidal method (5.5.10) gives a
better approximation of the Euler methods (5.5.8) (5.5.9).

Zero order hold Let us now assume that the dynamical system (5.5.1) is described
by linear time-invariant ordinary differential equations of the form

ẋ(t) = Ax(t) +Bu(t). (5.5.11)

Where A ∈ Rn×n and B ∈ Rn×m and x(t0) = x0. The system (5.5.11) admits a closed
form solution (5.5.6) of the form

x(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)Bu(τ) d τ (5.5.12)

Let us now assume that the control input is kept constant in an interval d t, i.e.,
u(t) = ū for t ∈ [t0, t0 + d t]. Then Equation (5.5.12) can be rewritten as

x(t0 + d t) = eA(d t)x0 +
∫ d t

0
eAτ d τBū (5.5.13)

Assume that the control input is kept constant during every sampling period d t, and
that its value is equal to u(t0 + k d t) = uk. Then Equation (5.5.13) can be rewritten as

xk+1= eA d txk +
∫ d t

0
eAτ d τBuk (5.5.14a)

= Adxk +Bduk. (5.5.14b)

This method is known as the zero order hold integration method since the input is
kept constant (i.e., it is held) during the sampling period.

Optimal Control and Non-Linear Optimization Basics 86

t

x(t)

x0

(a) Single shooting.

t

x(t)

x0

x1

x2

x3
x4

x5

x6

(b) Multiple shooting.

Figure 5.7 Single and Multiple shooting.

The presented integration methods can be exploited recursively to determine the
state evolution from t0 to tf . Consequently, it would be possible to convert the
continuous dynamical system into a set of equality constraints that can be embedded
in the optimization problem (5.3.1). This technique is often denoted as shooting.

5.5.2 Shooting methods

Single shooting

Let us consider the discretized dynamical system (5.5.7). We notice that a given state
xk+1 can be written as a function of the initial state x0 and the input sequence uj

Optimal Control and Non-Linear Optimization Basics 87

where j ∈ [0, k]. In fact,

x1=Γ(x0, u0), (5.5.15a)
x2=Γ(x1, u1) = Γ (Γ(x0, u0), u1) , (5.5.15b)
x4=Γ(x2, u2) = Γ (Γ (Γ(x0, u0), u1) , u2) , (5.5.15c)

... (5.5.15d)
xk+1=Γ(xk, uk) = Γ (. . . (Γ(x0, u0), . . .) , uk) . (5.5.15e)

Therefore, with a single shooting method, it is possible to obtain the terminal state
starting from the initial one, without having to consider all the intermediate states. In
an optimization framework, the set of optimization variables would consist only of the
control inputs applied at each step.

Multiple shooting

If the system is nonlinear, the composition of function Γ N times may result in a very
complex expression. In addition, it is difficult to specify path constraints, i.e., those
involving intermediate states. These problems, typical of the method just introduced,
are solved using a multiple shooting approach [Bock and Plitt, 1984; Diehl et al., 2006],
where all the intermediate state variables are also optimization variables. This has
the clear disadvantage of including more variables and constraints in the optimization
problem. In fact, it is necessary to add a constraint for each pair of optimization
variables of the form

x1 − Γ(x0, u0) = 0 (5.5.16a)
x2 − Γ(x1, u2) = 0 (5.5.16b)
x3 − Γ(x2, u2) = 0 (5.5.16c)

... (5.5.16d)
xN − Γ(xN−1, uN−1) = 0. (5.5.16e)

Where each constraint i depends only on the state i , i + 1 and the control input i.
Seeing that the dynamics is discretized, the cost function (5.5.4a) becomes

J (x0, . . . , xN , u0, . . . , uN−1) = β (xN) +
N−1∑

i

ℓ (xi, ui) d t. (5.5.17)

Optimal Control and Non-Linear Optimization Basics 88

Following the same approach, the algebraic constraints (5.5.4c), become a list of
constraints

c(x0, u0) ≤ 0nc×1 (5.5.18a)
c(x1, u1) ≤ 0nc×1 (5.5.18b)
c(x2, u2) ≤ 0nc×1 (5.5.18c)

... (5.5.18d)
c(xN−1, uN−1) ≤ 0nc×1. (5.5.18e)

Substituting the discretized dynamics (5.5.16), the cost function (5.5.17) and
algebraic constraints (5.5.18) into the Bolza problem (5.5.4), we obtain the final form
of the optimal control problem solved with a direct multiple shooting method

minimize
x0,...,xN ,u0,...,uN−1

β (xN) +
N−1∑

k

ℓ (xk, uk) d t (5.5.19a)

subj. to xk+1 − Γ(xk, uk) = 0 k = 0 . . . N − 1 (5.5.19b)
c(xk, uk) ≤ 0nc×1 k = 0 . . . N − 1 (5.5.19c)
x0 = x(t0). (5.5.19d)

5.6 Model predictive control

When solving the optimal control problem (5.5.4) using a direct method, the output
is a sequence of control input ui. Indeed, given x0, we obtain uk, with k from 0 to
N − 1. The application of all these control inputs would result in an open-loop control.
Alternatively, we can apply u0 only and discard all other control inputs. Let the system
evolve to retrieve a new feedback. The time horizon is shifted by an amount equal
to d t and the optimal control problem (5.5.19) is solved again with a different initial
condition. This method of discarding the control values except the first and shifting the
time horizon is called receding horizon principle [Mayne and Michalska, 1990; Shahriar
et al., 2013]. It provides the basis for the so-called model predictive control (MPC)
[Bemporad et al., 2002; García et al., 1989].

We identify with xk|i the state vector at time k + i predicted at time i by starting
from the current state x0|i = x(t0 + i d t). Similarly, uk|i is the optimal control strategy

Optimal Control and Non-Linear Optimization Basics 89

that should be applied at k + i and computed at time i. Given the optimal control
sequence, denoted as U∗

i = {u∗
0|i, u

∗
1|i, . . . , u

∗
N |i}. We apply only the first element of U∗

i

to the dynamical system (5.5.1)
u(t) = u∗

0|i. (5.6.1)

Then the optimization problem is solved at time i+ 1 considering the new state x0|i+1

– Figure 5.8. In the end, applying the receding horizon principle, we can formulate the
optimal control problem (5.5.19) as follows:

minimize
x0|i,...,xN|i,u0|i,...,uN−1|i

β
(
xN |i

)
+

N−1∑
k

ℓ
(
xk|i, uk|i

)
d t (5.6.2a)

subj. to xk+1|i − Γ(xk|i, uk|i) = 0 k = 0 . . . N − 1 (5.6.2b)
c(xk|i, uk|i) ≤ 0nc×1 k = 0 . . . N − 1 (5.6.2c)
x0|i = x(t0 + i d t). (5.6.2d)

Optimal Control and Non-Linear Optimization Basics 90

reference

predicted state

control inputs

Past Future

reference

predicted state

control inputs

Past Future

u0|̂i

î

u0|̂i+1

î+ 1

î+ 1

Figure 5.8 Receding horizon principle. At each sampling time, starting at the current
state, an open-loop optimal control problem is solved over a finite horizon. The
computed optimal manipulated input signal is applied to the process only during the
following sampling interval i, i+ 1. At the next time step i+ 1, a new optimal control
problem based on new measurements of the state is solved over a shifted horizon.

Chapter 6

State of the Art and Thesis
Context

This chapter presents the bipedal locomotion state of the art, focusing on the definition
of the different layers of the walking architecture. The chapter contains two main
sections, and it is organized as follows. Section 6.1 contains the state of the art.
Section 6.2 presents the context of the thesis contributions.

6.1 State of the Art

Despite the efforts of researchers in the field of humanoid robotics, bipedal locomotion
remains an open problem. The complexity of the robot dynamics, the unpredictability
of its surrounding environment, and the low efficiency of the robot actuation system
are only few problems that complexify the achievement of robust robot locomotion. In
the wide variety of robot controllers for bipedal locomotion, the Divergent-Component-
of-Motion (DCM) is a ubiquitous concept used for generating walking patterns. Unlike
quadrupeds [Poulakakis et al., 2005] or wheeled robots [Borst et al., 2009], maintaining
the upright position is a complex task for a bipedal robot due to several factors,
including, but not limited to the instability due to the bipedal posture, complexity in
modeling, control in real time, and the actuation system to guarantee fast and efficient
motions [Kaneko et al., 2011; Tsagarakis et al., 2017]. To guarantee stable bipedal
locomotion, feedback control plays an important role, where common approaches are
based on simplified models to achieve fast feedback.

During the DARPA Robotics Challenge, a common approach to humanoid robot
control consisted of defining a hierarchical architecture composed of several layers [Feng

State of the Art and Thesis Context 92

Trajectory
Optimization

Simplified
Controller

Whole-Body
Controller

Humanoid
Robot

Frequency

Perception

Figure 6.1 The three layer controller architecture. Inner the loop, the higher the
frequency. Each layer gathers the outcome of the outer layer, the information from the
robot through the perception block and generates the references for the inner layer.

et al., 2015a]. Each layer generates references for the layer below by processing inputs
from the robot, the environment, and the output of the previous layer. The inner layer,
the shorter the time horizon used to evaluate the output. In addition, lower layers
usually employ more complex models to evaluate output, but a shorter time horizon
often results in faster computations to obtain these outputs. From top to bottom, these
layers are here called: trajectory optimization, simplified model control, and whole-body
quadratic programming (QP) control – Figure 6.1. When an external disturbance acts
on the robot, it may be necessary to consider the robot’s state up to the trajectory
optimization layer, recomputing the contact location to avoid the robot from falling.

6.1.1 Trajectory optimization layer

The trajectory optimization layer aims to compute a sequence of contacts’ location
and timings while considering the robot state. This layer often exploits optimization
techniques to consider the feasibility of the contact location. To do so, both kinematic
and dynamical robot models can be considered [Dai et al., 2014; Herzog et al., 2015].
More generally, when planning locomotion trajectories, the choice of the robot de-
scription plays a crucial role. In fact, the simpler the model, the simpler the problem.
However, on the other hand, too simple models prevent the robot from performing
highly dynamic motions. For instance, flat terrain allows one to model the robot as
a simple unicycle [Flavigne et al., 2010; Morin and Samson, 2008] which enables fast
solutions to the optimization problem for the walking pattern generation [Dafarra et al.,
2018].

State of the Art and Thesis Context 93

When an external disturbance acts on the robot, the trajectory optimization layer
should be in charge of recompiling the contact location to avoid the robot from falling.
In recent years, several attempts have been made in this direction. The new contact
locations can be optimized assuming a constant step duration [Feng et al., 2016; Shafiee-
Ashtiani et al., 2017b; Stephens and Atkeson, 2010b] or adaptive step timing [Griffin
et al., 2017; Khadiv et al., 2016; Scianca et al., 2020; Shafiee et al., 2019]. Approximating
the robot with a simplified model allows for solving the footsteps adjustment problem
online. However, simplified model-based controller architectures often treat the contact
adjustment strategy separately from the main control loop [Griffin et al., 2016; Mesesan
et al., 2021; Shafiee et al., 2019] or apply heuristic-based strategies [Di Carlo et al.,
2018]. Furthermore, approaches based on simplified models require hand-crafted models
for the task at hand [Englsberger et al., 2015a; Kajita et al., 2001; Poulakakis and
Grizzle, 2009], thus making the transition between different tasks, i.e., from locomotion
to running, often very complex.

At the planning level, several attempts have been made to consider the centroidal
dynamics [Orin et al., 2013] and robot kinematics to plan the desired motion trajecto-
ries [Dafarra et al., 2020, 2022; Dai et al., 2014; Fernbach et al., 2018; Herzog et al.,
2015]. These methods can be split into five categories depending on the amount of a
priori information on the contact location and timings they require. From the more
general (and also computationally greedy) to the more contact information depen-
dent, we have: Complementary-free methods, Mixed-integer methods, predefined contact
sequence, predefined contact location and timings and Offline library-based methods.

Complementary-free methods These methods consider the definition of contacts
explicitly within the planner. Hence, contact location, timing, and sequence are decided
directly by the planner, allowing to generate complex motions [Dafarra et al., 2020,
2022; Dai et al., 2014]. With this approach, no prior knowledge is injected into the
system to generate walking trajectories (i.e., the definition of the contact is explicitly
considered inside the planner), but the whole-body motions result from a particular
choice of the cost function. Although providing enhanced planning capabilities, given
its complexity, a whole-body planner may take several minutes to compute a feasible
solution. This prevents their usage online.

Mixed-integer methods These approaches attempt to reduce the computational
burden of the complementary-free methods by using an integer variable to determine

State of the Art and Thesis Context 94

where a contact should be established [Deits and Tedrake, 2015; Mason et al., 2018]
and in which instant [Aceituno-Cabezas et al., 2017; Ibanez et al., 2014]. These
approaches generally require mixed integer programming tools [Axehill and Hansson,
2006; Gurobi Optimization, 2022; Stellato et al., 2018b]. Mixed-integer programming
methods provide enhanced modeling capabilities. However, the exploitation of integer
variables strongly affects the computational performances, especially in case several
contacts can be established.

Predefined contact sequence A common approach to reducing the computational
demand is to assume a predefined contact sequence [Caron and Pham, 2017; Carpentier
et al., 2016; Winkler et al., 2018] while keeping the contact location and timings as the
output of the planner. For instance, for a bipedal robot, we can assume that a contact
with the right foot will be followed by another one with the left foot. Even if such a
choice simplifies the planning problem, the computational effort still prevents the use
of the planner in a closed-loop controller.

Predefined contact location and timings Taking into account a predefined con-
tact location and timings, the planning problem can finally be solved online. Since the
contact sequence is predefined, this kind of planner generally aims to generate only the
centroidal quantities [Orin et al., 2013] and [Traversaro, 2017, Section 3.9.3]. To keep
the problem treatable online, the non-linear non-convex angular momentum dynamics
(see Section 3.4) is often neglected. For instance, Caron et al. [2016] consider only the
CoM dynamics to generate feasible locomotion patterns. Ponton et al. [2016] propose
a convex relaxation of the angular momentum dynamics that allowed to efficiently
compute momentum trajectories and contact forces while considering the angular
momentum minimization. This relaxation is then extended to include an explicit target
momentum in the cost function [Ponton et al., 2018].

Differential Dynamic Programming (DDP) techniques have also been exploited to
generate feasible whole-body trajectories given a set of predefined contact locations
and timings. Budhiraja et al. [2018] design a whole-body trajectory planner based on
Differential Dynamic Programming (DDP). The proposed method produces locomotion
motions by exploiting the centroidal angular momentum. Recently, [Dantec et al., 2021]
has taken advantage of the DDP framework to design a whole-body model predictive
control with state feedback on a torque-controlled humanoid robot.

State of the Art and Thesis Context 95

These methods need to rely on external contact planners. However, in some
applications, where multiple contacts can be established in several regions, this approach
may be the most viable solution. Furthermore, since the optimization problem can be
treated online, the contact location and timings can be adjusted to avoid the robot
from falling in case of unstructured interaction with the environment.

Offline library-based methods Finally, another common approach to reduce the
computational complexity is to use an offline constructed gait library [Guo et al., 2021;
Nguyen et al., 2020]. This approach simplifies the problem and allows the planner to
run online. However, the offline gait can generate only a finite set of motions, making
the task of adding a new behavior to the library of motions more complex.

6.1.2 Simplified model control layer

The simplified model control layer is responsible for finding feasible robot center-of-
mass (CoM) trajectories. However, the computational burden of finding feasibility
regions usually calls for simplified models to characterize the robot dynamics. Indeed,
assuming a constant height of the center of mass while walking and a constant angular
momentum, it is possible to design a simple control strategy based on the well-known
Linear Inverted Pendulum Model (LIPM) [Kajita et al., 2001] – See Section 4.1. Taking
into account the LIPM dynamics, several authors propose the idea of decomposing the
CoM dynamics into a stable and an unstable component [Englsberger et al., 2011; Hof,
2008; Koolen et al., 2012; Pratt et al., 2006, 2012; Takenaka et al., 2009]. Hof [2008]
denotes the unstable part of the dynamics as Extrapolated Center of Mass. While,
authors of [Pratt et al., 2012] and [Koolen et al., 2012] name it (instantaneous) Capture
Point (ICP). The term Divergent Component of Motion (DCM) was finally coined
by Takenaka et al. [2009]. Initially presented for a 2D scenario, the DCM has been
extended in the 3D case, too [Englsberger et al., 2013, 2015a]. By definition, the DCM
model assumes a constant natural frequency of the LIPM.

The LIPM and the DCM models have a widespread diffusion in both position-based
control robots [Kamioka et al., 2018; Leng et al., 2020; Ramuzat et al., 2021; Shafiee-
Ashtiani et al., 2017b] and torque-controlled robots [Dafarra et al., 2016; Englsberger
et al., 2018a,b; Griffin and Leonessa, 2016; Hopkins et al., 2014; Koolen et al., 2012;
Pratt et al., 2012; Stephens and Atkeson, 2010b]. Both the LIPM and the DCM
are linear models; their linearity is based on the assumption of constant CoM height
and constant centroidal angular momentum. The model time constant depends on

State of the Art and Thesis Context 96

the desired CoM height. Englsberger et al. [2013] shows that the linearity of the
DCM model can be preserved even in the case of varying the CoM height. However,
assuming a constant natural frequency, the desired DCM reference can deviate from
the time-invariant LIPM dynamics when the vertical CoM varies. Hopkins et al. [2014]
attempt at loosening this assumption by extending the DCM to consider a time-varying
natural frequency. By varying the natural frequency of the DCM, the authors of
[Hopkins et al., 2014] can achieve generic CoM height trajectories during stepping. By
relaxing the hypothesis of constant CoM height, the LIPM dynamics can be extended
to a variable-height inverted pendulum (VHIP) model [Koolen et al., 2016]. The author
of [Caron, 2020] proposes a simplified model controller based on the linear feedback of
the VHIP. This approach is based on a dynamical extension of the DCM. Here, the
VHIP time parameter is considered in the DCM state.

The simplified models have become very popular thanks to the combination with
the Zero Moment Point (ZMP) as a contact feasibility criterion [Vukobratovic and
Juricic, 1969] in the case of complanar contact scenarios and indefinitely high friction
between the feet and the environment. Caron et al. [2017] generalize the ZMP contact
stability in the case of multiple non-complanar contacts while considering frictional
constraints.

By exploiting these simplified models, several instantaneous controllers [Englsberger
et al., 2018a,b, 2015a; Hopkins et al., 2014] and on-line model predictive controller
(MPC) [Bombile and Billard, 2017; Dafarra et al., 2018; Diedam et al., 2008; Griffin and
Leonessa, 2016; Naveau et al., 2017; Wieber, 2006] have been designed. Englsberger et al.
[2015a] propose a simple proportional controller to stabilize the unstable linear DCM
dynamics. Similarly Hopkins et al. [2014] present a proportional-integral controller
that guarantees the tracking of the desired time-varying DCM trajectory. On the other
hand, MPC frameworks often provide references for the footstep locations [Diedam
et al., 2008; Feng et al., 2016; Joe and Oh, 2018; Shafiee-Ashtiani et al., 2017b] and
timings [Griffin et al., 2017; Khadiv et al., 2016] in the form of small adjustments with
respect to desired values.

Finally, using the LIPM model, it is also possible to derive MPC schemes that are
guaranteed to produce stable CoM trajectories [Scianca et al., 2016, 2020]

6.1.3 Whole-Body control layer

The whole-body control layer generates robot positions, velocities, or torques depending
on the available control modes of the underlying robot. These outputs aim at stabilizing

State of the Art and Thesis Context 97

the references generated by the previous layers. It considers the whole-body kinematic
or dynamical models and very often instantaneous optimization techniques: no MPC
methods are here employed. Furthermore, the associated optimization problem is often
framed as a hierarchical stack-of-tasks, with strict or weighted hierarchies [Nava et al.,
2016; Stephens and Atkeson, 2010b]. The optimization problem depends linearly on the
decision variables. As a consequence, the whole-body control layer often implements a
quadratic programming problem (see Section 5.4). The authors of [Herzog et al., 2016]
solve the whole-body control problem by designing hierarchical inverse dynamics that
consider the centroidal momentum of the robot. The authors transcribe the problem
in a cascade of Quadratic Programming problems.

In recent years, due to the increased development of humanoid robots exposing the
torque control interface [Englsberger et al., 2015b; Kaneko et al., 2019; Stasse et al.,
2017], the scientific community has been interested in the possibility of using torque
control-based algorithms to perform locomotion tasks [Englsberger et al., 2018b; Feng
et al., 2015b; Koolen et al., 2012; Kuindersma et al., 2016; Lee et al., 2016; Ramuzat
et al., 2022, 2021; Stephens and Atkeson, 2010a]. Indeed, torque-controlled robots have
several advantages over position or velocity-controlled ones. A torque-controlled robot
is, in fact, intrinsically compliant in the case of unexpected external interactions [Fahmi
et al., 2019; Henze et al., 2016; Mesesan et al., 2019], and thus it can be used to perform
cooperative tasks with humans [Romano et al., 2018; Sheridan, 2016; Tirupachuri et al.,
2020]. In the whole-body QP control layer, the interaction between the environment
and the robot is often modeled using the rigid contact assumption [Herzog et al., 2016;
Hopkins et al., 2015; Nava et al., 2016]. Under this hypothesis, the controller can
instantly change the contact forces to guarantee the tracking of desired quantities. If
the robot interacts on a visco-elastic surface, the rigid contact assumption no longer
holds, and the whole-body QP controller cannot arbitrarily change the contact forces.

At the modeling level, when a robot interacts with a visco-elastic surface, it is
pivotal to design models that characterize the interaction properties, such as compliance
and damping. Remark that the term contact describes situations where two bodies
come in touch with each other at specific locations [Gilardi and Sharf, 2002]. Then,
contact models can be classified into two main categories: rigid and compliant. When
the contact is rigid, the bodies’ mechanical structure does not change substantially, and
the velocities of the system are often subject to discontinuities [Whittaker and McCrae,
1988]. Although they enable instantaneous feedback controllers for a large variety of
robots [Englsberger et al., 2018b], rigid contact models may lead to poorly reproducible

State of the Art and Thesis Context 98

simulation results in the presence of static frictions and multi-body systems [Mason
and Wang, 1988; Stronge, 1991]. Therefore, the use of compliant contact models is a
valid alternative to solve the limitations due to the rigid contact formulation.

The contact between a rigid body and a compliant environment can be defined
as a linear or a non-linear function. The Kelvin-Voigt model is a linear model that
describes the contact with a purely viscous damper and a purely elastic spring connected
in parallel [Hajikarimi and Moghadas Nejad, 2021]. The Maxwell model assumes a
purely viscous damper and a purely elastic spring connected in series [Hajikarimi
and Moghadas Nejad, 2021]. Both the Kelvin-Voigt and the Maxwell models are
characterized by only two parameters that depend on the mechanical properties of
contact surfaces.

On the other hand, the literature on the non-linear modeling of compliant contacts
is extensive. Originally, compliant contact models considered the contact between two
spheres or between a sphere and a flat plate [Falcon et al., 1998; Hunt and Crossley,
1975; Lankarani and Nikravesh, 1990; Marhefka and Orin, 1999]. For instance, Hunt
and Crossley [1975] characterize the ground as a non-linear spring-damper pair whose
intrinsic parameters are chosen to satisfy Hertz’s theory [Johnson, 1985, Chapter 4].
This model has become well known in the robotics community and is often denoted as
the Hunt-Crossley model. Lankarani and Nikravesh [1990] extends the Hunt-Crossley
model to consider the impact within multi-body systems.

On the other hand, the authors of [Azad and Featherstone, 2014] slightly modify
the Hunt-Crossley model to consider the coefficient of restitution between spheres and
plates of various materials.

At the control level, when the contact between a robot and its surrounding environ-
ment is sufficiently stiff, controllers based on the rigid contact assumption may still
lead to acceptable robot performances.

In this case, a possibility is to design contact-model-free passivity-based control
strategies [Henze et al., 2016; Mesesan et al., 2019]. When contact compliance impairs
robot performance, it is pivotal to design contact models that take into account contact
stiffness and damping, which can then be incorporated into feedback controllers.

Pure stiffness (no damping) linear lumped models of the soft contact can, for
instance, be considered to design whole-body controllers in the presence of visco-elastic
contact surfaces [Catalano et al., 2020; Flayols et al., 2020; Raibert and Craig, 1981].

State of the Art and Thesis Context 99

Damping components can also be added to the contact model [Azad et al., 2016;
Chiaverini et al., 1994; Fahmi et al., 2020], but the main assumption remains that the
robot makes contact with the environment at isolated points, not on surfaces.

Still using lumped parameters, another approach to modeling soft contact surfaces
consists in assuming that the contact interaction can be characterized by equivalent
springs and rotational dampers, which can then be employed for robot control [Li
et al., 2019; Sygulla and Rixen, 2020]. This approach leads to the problem of giving a
physical meaning to the contact parameters associated with the torque in the contact
wrench. Furthermore, springs and rotational dampers are inherently ill-posed: they
make use of the three-angle SO(3) minimal representation to model foot rotations
(e.g. the roll-pitch-yaw convention). At the planning level, the finite element method
(FEM) can also be used to model the static equilibrium of a body in contact with a soft
environment [Bouyarmane and Kheddar, 2011]. While providing enhanced modeling
capabilities, FEM methods demand heavy computational time, which usually forbids
their use in time-critical feedback control applications.

6.2 Thesis Context

Taking into account the three-layer controller architecture of locomotion – Figure 6.1,
a natural question arises about the choice of the specific implementation of each block.
Indeed, we humbly believe that different tasks can be accomplished while keeping a
cascade control structure and changing the models considered in the specific layer.

Having in mind the research question, we now detail the context of the thesis
contributions. Considering the three-layer controller architecture – Figure 6.1 we
split the contributions into two parts. Part II is related to the whole-body-control
layer. While Part III concerns the trajectory optimization and the simplified model
control layer. The first chapter of each part presents a benchmarking of the associated
state-of-the-art algorithms. The remaining chapters attempt to loosen some of the
hypotheses and limitations of the state-of-the-art controllers.

6.2.1 Part II: Whole-Body Controllers

This part presents the design of three whole-body controllers for humanoid robot
locomotion. The content of each chapter follows.

State of the Art and Thesis Context 100

Chapter 7: Benchmarking of Whole-Body Controllers for Locomotion on
Rigid Environment

In this chapter we present a comparison of whole-body controllers for locomotion
on rigid contact. Assuming the three-layer architecture in Figure 6.1, we propose a
kinematics-based and a dynamics-based whole-body controller. The former considers
the kinematics of the robot to generate the desired joint positions/velocities. The
latter is based on the entire robot dynamics and its output is the desired joint torques.
Thanks to the modularity of the two control problems, it is possible to exchange the
two implementations depending on the low-level controller currently available on the
robot, namely position, velocity or torque controller.

We compare the two whole-body controllers in the three-layer architecture. In
particular, the trajectory optimization layer is kept fixed with a unicycle-based planner
that generates the desired DCM and foot trajectories, and the simplified model control
layer, instead, implements an instantaneous controller for the DCM tracking. The
several combinations of the control architecture are tested on the iCub humanoid robot
v2.7 – see Section 1.1.1. While discussing the results, we underline the strengths and
weaknesses of the two approaches.

Chapter 8: Whole-Body Controller on Visco Elastic Environment

This chapter contributes towards the modeling of compliant contacts for robot motion
control. More precisely, the main contributions follow. i) A new contact model that
characterizes the stiffness and damping properties of a visco-elastic material that
exerts forces and torques on rigid surfaces in contact with it. Differently from classical
state-of-the-art models used for robot control [Fahmi et al., 2020; Flayols et al., 2020;
Li et al., 2019], the presented model considers the environment as a continuum of
spring-damper systems, thus allowing us to compute the equivalent contact force and
torque by computing surface integrals over the contact surface. As a consequence, we
avoid using linear rotational springs and dampers to describe the interaction between
robot and environment. We show that the model we propose extends and encompasses
these linear models. ii) A whole-body controller that allows humanoid robots to
walk on visco-elastic floors, which are modeled using the proposed compliant contact
model. The robot controller estimates the model parameters on-line, so there is no
prior knowledge of the contact parameters. iii) A validation of the approach on the
simulated torque-controlled humanoid robot iCub v2.7 (Section 1.1.1), with an extensive

State of the Art and Thesis Context 101

comparison between the proposed methods and classical state of the art techniques.
Furthermore, we analyze the robustness capability of the presented controller with
respect to non-parametric uncertainty in the contact model. Finally, we present the
contact parameter estimation performance in the case of an anisotropic environment.

Chapter 9: Whole-Body Control of Humanoid Robots with Link Flexibility

In this chapter, we propose an extension of the state-of-the-art whole-body torque
controller in the case of the robot affected by inner link flexibility. More precisely, the
main contributions are threefold. i) A whole-body controller that allows humanoid
robots affected by undesired link deflection to walk on rigid floors. Similarly to
the Authors of [Villa et al., 2022] we model the link flexibility with undeactuated
passive joints. Our controller implicitly considers the joint deformation and, differently
from [Villa et al., 2022], our design does not perform any local compensation for the
deflections. ii) An observer whose objective is to estimate the state of the flexible joint,
specifically the position, the velocity and the torque, using only the measured contact
force and the actuated joint state iii) The approach was validated on the simulated
torque-controlled humanoid robot TALOS (Section 1.2), with extensive comparisons
between the proposed methods and classical state-of-the-art techniques.

6.2.2 Part III: From Simplified to Reduced Models Controllers

This part discusses the design of the trajectories and the simplified model control layers.
We also try to move from the simplified to reduced models to compute the desired
trajectories for the whole-body control layer.

Chapter 10: Benchmarking of Simplified-Model Controllers for Locomotion

This chapter presents and compares several DCM based implementations of the
kinematic-based three-layer controller architecture 6.1 In particular, the trajectory
optimization layer is kept fixed with a unicycle-based planner that generates the desired
DCM and foot trajectories. The simplified model control layer, instead, implements
two controllers for the DCM tracking: an instantaneous and a MPC controller. In the
same layer, we also present a controller that ensures the tracking of the CoM and the
ZMP, which exploits 6-axes Force Torque sensors (F/T). Finally, the whole-body QP
control ensures the tracking of the desired CoM and feet trajectories.

State of the Art and Thesis Context 102

We test and compare the two implementations of the simplified model control layer
on the iCub humanoid robot v2.7 – see Section 1.1.1. We show that one of the proposed
implementations allows the iCub robot to achieve a walking velocity of 0.3372 meters
per second, which is the highest walking velocity ever achieved by the iCub robot.

Chapter 11: Non-Linear Centroidal Model Predictive Controller

This chapter presents the design of a non-linear Model Predictive Controller (MPC)
that aims at generating online feasible contact locations and wrenches for humanoid
robot locomotion. More precisely, different from classical control architectures based on
simplified models, the presented approach considers the reduced centroidal dynamics
model while keeping the problem still treatable online. By modeling the system using a
reduced model instead of a simplified one, we achieve highly dynamic robot motions to
be performed online. The contact location adjustment is considered in the centroidal
dynamics stabilization problem; thus, it is not required to design an ad-hoc block for
this feature. Furthermore, unlike existing work [Jeong et al., 2019; Shafiee-Ashtiani
et al., 2017b], the controller we propose automatically considers double support phases;
thus the contact adaptation feature is continuously active during both single and double
support phases. On the other hand, considering only the reduced centroidal dynamics
model keeps the problem at a low complexity and allows us to test the controller in
a close-loop architecture. This, except in a few cases [Dantec et al., 2021, 2022], is
almost impossible if the complete robot model is taken into account [Dafarra et al.,
2016; Fernbach et al., 2018; Herzog et al., 2015].

We validate the proposed control strategy on a simulation of one-leg and two-leg
systems performing jumping and running tasks, respectively. Results show that, differ-
ently from the simplified model controllers, the proposed centroidal MPC generalizes on
the number of contacts and the adjustment is automatically performed by the controller
in the case of external disturbance acting on the system. Furthermore, we embed the
MPC controller into the three-layer controller architecture (Figure 6.1) as a reduced
model control layer. The entire approach is also validated on the position-controlled
Humanoid Robot iCub v3 – see Section 1.1.2. We show that the proposed strategy
prevents the robot from falling while walking and being pushed with external forces
up to 40 Newton lasting 1 second when applied to the robot’s arm.

Part II

Whole-Body Controllers

Chapter 7

Benchmarking of Whole-Body
Controllers for Locomotion on
Rigid Environment

In Part I we introduced the background and the literature review of the thesis. Instead,
this chapter presents the first contribution of the manuscript. Here, we present and
compare several whole-body controllers for bipedal locomotion in a rigid environment.
In particular, we specify the three-layer controller architecture presented in Figure 6.1,
as shown in Figure 7.1. The trajectory optimization layer is kept fixed with a unicycle-
based planner [Dafarra et al., 2018] that generates the desired DCM and foot trajectories.
The simplified model control layer, instead, implements two types of controllers for
the tracking of the DCM: an instantaneous and an MPC one. The content of the
trajectory optimization and simplified model control layer is detailed in Chapter 10.
Finally, the whole-body QP control ensures the tracking of the desired CoM and feet
trajectories by considering the complete robot models. In this context, we first present a
kinematics-based whole-body controller, and then we extend the framework to consider
the robot dynamics. Thanks to the modularity of the two problems, it is possible
to exchange the two implementations depending on the low-level control interfaces
available on the robot. The several combinations of the control architecture along with
the simplified model controllers presented in Chapter 10 are compared on the iCub
humanoid robot v2.7 – see Section 1.1.1.

The chapter is organized as follows. Section 7.1 presents the kinematics-based
whole-body QP control layer. Section 7.2 details the dynamics-based whole-body
controller. Section 7.3 presents the experimental validation of the proposed approach

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment105

Trajectory
Optimization

Simplified
Controller

Whole-body
Controller

RobotDesired
DCM

Desired CoM
Velocity / ZMP

Joint positions
velocities or

torques

Contact Wrenches
Joint and CoM Position/Velocity

Chapter 10

Figure 7.1 The control architecture is composed of three layers: the trajectory opti-
mization, the simplified model control, and the whole-body control. The middle and the
other layers are described in Chapter 10.

and shows an explanatory table comparing the different control approaches. Finally,
Section 7.4 concludes the chapter.

The content of this chapter appears partially in:

Romualdi, G., Dafarra, S., Hu, Y., and Pucci, D. (2018). A Benchmarking
of DCM Based Architectures for Position and Velocity Controlled Walking
of Humanoid Robots. In 2018 IEEE-RAS 18th International Conference
on Humanoid Robots (Humanoids), pages 1–9. IEEE

Romualdi, G., Dafarra, S., Hu, Y., Ramadoss, P., Chavez, F. J. A.,
Traversaro, S., and Pucci, D. (2020). A Benchmarking of DCM-Based
Architectures for Position, Velocity and Torque-Controlled Humanoid
Robots. International Journal of Humanoid Robotics, 17(01):1950034

Video https://www.youtube.com/watch?v=FIqwAO71Fc4
GitHub robotology/walking-controllers

7.1 Kinematics based whole-body QP control layer

The goal of the kinematics-based whole-body QP control layer is to ensure the tracking of
a set of kinematic quantities considering the robot’s kinematics. The proposed controller
computes the desired robot generalized mixed representation velocity B[I]ν (3.2.18),
where B[I] = (oB, [I]) is a frame placed on the robot base and oriented as the inertial

https://www.youtube.com/watch?v=FIqwAO71Fc4
https://github.com/robotology/walking-controllers

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment106

frame I. We formulate the control problem using the stack of tasks approach. We
achieve the control objective by framing the controller as a constrained optimization
problem where the low priority tasks are embedded in the cost function, while the high
priority tasks are treated as constraints. A similar approach has also been presented
in [Kanoun et al., 2011; Khudher and Powell, 2016; Rapetti et al., 2020], it is important
to recall that other strategies are available to solve the kinematics control problem,
in this context it is worth mentioning [Buss and Kim, 2005; Goldenberg et al., 1985;
Sciavicco and Siciliano, 1988].

In the next section, we present the set of low and high priority tasks. For the sake
of clarity, we denote the generalized mixed robot velocity B[I]ν as ν.

7.1.1 Low and high priority tasks

What follows presents the tasks required to evaluate the desired generalized robot
velocity, ν. We denote by Ψ the equality task and by Φ the inequality task.

Centroidal momentum task

The centroidal momentum, denoted with Ḡh ∈ R6, is the aggregate linear and angular
momentum of each robot link referred to the center of mass (CoM) of the robot
Ḡh

⊤ =
[

Ḡh
p⊤

Ḡh
ω⊤
]

– Section 3.4. It is worth recalling that the centroidal momentum
can be factorized as follows (3.4.4)

Ḡh = JCMMν, (7.1.1)

where JCMM is the centroidal momentum matrix [Orin and Goswami, 2008; Orin
et al., 2013]. In order to set a desired centroidal momentum trajectory, we specify the
following task:

Ψh = Ḡh
∗ − JCMMν, (7.1.2)

where the desired linear centroidal momentum is often chosen to guarantee the tracking
of the desired center of mass trajectory xref

CoM(t)

Ḡh
p∗ = m

[
ẋref

CoM +KCoM(xref
CoM − xCoM)

]
. (7.1.3)

Here KCoM is a positive matrix. The desired angular momentum Ḡh
ω∗ is often set

equal to zero, i.e., Ḡh
ω∗ = 03×1.

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment107

The centroidal momentum task is often split into the linear and angular centroidal
momentum tasks. The linear centroidal momentum task, denoted with ΨCoM, is:

ΨCoM=
[
I3 03×3

]
Ψh (7.1.4a)

= Ḡh
p∗ −

[
I3 03×3

]
JCMMν (7.1.4b)

= Ḡh
p∗ − JCMMpν (7.1.4c)

where Ḡh
p∗ is chosen as (7.1.3) and JCMMp is the matrix composed of the first three

rows of JCMM. Similarly, we introduce the angular momentum task:

Ψhω=
[
03×3 I3

]
Ψh (7.1.5a)

= Ḡh
ω∗ −

[
03×3 I3

]
JCMMν (7.1.5b)

= Ḡh
ω∗ − JCMMων, (7.1.5c)

where JCMMω is the matrix composed of the last three rows of JCMM.

Cartesian task

While walking, we often require some of the robot link frames to have a specific position
and orientation with respect to the inertial frame. To accomplish this task, we recall
that given a frame L, its velocity expressed in mixed representation, denoted as L[I]vI,L,
is given by

L[I]vI,L = JLν (7.1.6)

where JL is the mixed velocity Jacobian of the link L (3.2.17). To ask for a desired
Cartesian trajectory IHref

L = (pref
L , IRref

L) ∈ R3 × SO(3), we specify the following task

ΨLSE(3) = L[I]v∗
I,L − JLν (7.1.7)

where L[I]v∗
I,L =

[
ṗ∗⊤

L
Iω∗⊤

I,L

]⊤
is chosen as

ṗ∗
L = ṗref

L +KLp(pref
L − pL) (7.1.8a)

Iω∗
I,L = Iωref

I,L +KLω Log
(

IRref
L

IR⊤
L

)
. (7.1.8b)

Here KLp and KLω are two positive matrices. By such a particular choice of the desired
velocity (7.1.8b), it is possible to guarantee almost-global stability and convergence of
IRL to IRref

L [Olfati-Saber, 2001].

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment108

Starting from the definition of the SE(3) task (7.1.7), we introduce the positional
and rotational tasks for the frame L, respectively, denoted as ΨLR3 and ΨLSO(3) . The
positional task ΨLR3 is just a projection of the SE(3) task ΨLSE(3) as:

ΨLR3 =
[
I3 03×3

]
ΨLSE(3) (7.1.9a)

= ṗ∗
L −

[
I3 03×3

]
JLν (7.1.9b)

= ṗ∗
L − JLpν, (7.1.9c)

where ṗ∗
L is set as (7.1.8a) and JLp is the matrix composed of the first three rows of

JL. Similarly, we define the SO(3) task as follows:

ΨLSO(3)=
[
03×3 I3

]
ΨLSE(3) (7.1.10a)

= Iω∗
I,L −

[
03×3 I3

]
JLν (7.1.10b)

= Iω∗
I,L − JLων. (7.1.10c)

Iω∗
I,L is set as (7.1.8b) and JLω is the matrix composed of the last three rows of JL.

Joint regularization task

In order to prevent the controller from providing solutions with huge joint variations,
we introduce a regularization task for the joint variables. The task is achieved by
asking for a desired joint velocity that depends on the error between the desired and
measured joint values, such as:

Ψs = ṡ∗ −
[
0n×6 In

]
ν, (7.1.11)

where n is equal to the robot actuated degrees of freedom and ṡ∗ is set equal to

ṡ∗ = ṡref +Ks(sref − s). (7.1.12)

Here sref is the desired joint configuration. Ks is a positive define diagonal matrix.

Joint limits task

The feasibility of the joint position s is generally guaranteed by means of a set of
inequalities of the form

s− ≤ s ≤ s+, (7.1.13)

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment109

where s− and s+ are respectively the lower and upper joints position limits. In the case
of the kinematics-based whole-body controller, the joint values s cannot be arbitrarily
chosen. To overcome this issue, we substitute the joint position s in (7.1.13) with its
discrete dynamics computed at time using the forward Euler method t0 + k d t, i.e.,
s(t0 + (k + 1) d t) = sk+1 = sk + d tṡk:

s− ≤ sk + d tṡk ≤ s+. (7.1.14)

Rearranging (7.1.14) we obtain the final formulation of the joint limits task

Φs : s− − s
d t ≤ ṡ ≤ s+ − s

d t . (7.1.15)

where we remove the time dependency k.

7.1.2 Quadratic programming problem

The control objective is achieved by transcribing the control problem as a constrained
optimization problem considering the tasks presented in Section 7.1.1. We want to
underline that given an equality task Ψ, it is always possible to consider it as a
low or high priority task, or, in another word, as a term of the cost function or as
an equality constraint. Consequently, this makes the kinematics based whole-body
problem modular1. A different choice of the considered tasks and priorities allows
one to obtain completely different robot behaviors. Given the above observation, we
decide to present the specific implementation we consider in the experimental results –
Section 7.3.

The tracking of the left and right foot poses are considered as high priority SE(3)
tasks (7.1.7) and are denoted respectively as ΨLSE(3) and ΨRSE(3) . We take into account
the CoM tracking as a high priority task (7.1.4). The torso orientation is considered
as a low priority task SO(3) task (7.1.10) and we denote it with ΨTSO(3) . Furthermore,
the joint postural condition (7.1.11) is also added as a low priority task. Finally, we
ask for a joint velocity ṡ such that the inequality joint limits task (7.1.14) is satisfied.

1The QPInverseKinematics class implemented in our framework exploits this modularity to
customize the control problem: https://github.com/ami-iit/bipedal-locomotion-framework/
tree/v0.6.0/src/IK

https://github.com/ami-iit/bipedal-locomotion-framework/tree/v0.6.0/src/IK
https://github.com/ami-iit/bipedal-locomotion-framework/tree/v0.6.0/src/IK

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment110

The above hierarchical control objectives can be cast into a whole-body optimization
problem:

minimize
ν

Ψ⊤
TSO(3)

ΛT ΨTSO(3) + Ψ⊤
s ΛsΨs (7.1.16a)

subj. to ΨLSE(3) = 0 (7.1.16b)
ΨRSE(3) = 0 (7.1.16c)
ΨCoM = 0 (7.1.16d)
Φs. (7.1.16e)

Since the decision variable is the robot velocity ν and the tasks depend linearly on ν,
we transcribe the optimization problem (7.1.16) into a quadratic programming problem
(Section 5.4) of the form:

minimize
ν

ν⊤Hν + 2g⊤ν (7.1.17a)
subj. to Aν ⪯ b (7.1.17b)

The Hessian matrix H and the gradient vector g are evaluated from (7.1.16a). The
constraint matrix and vector A and b are obtained from (7.1.16b), (7.1.16c), (7.1.16d)
and (7.1.16e). Using this formulation, the optimization problem can be solved using a
standard numerical QP solver.

7.1.3 Position and velocity controlled robot

It is important to notice that the outcome of (7.1.16) is (also) the robot joint velocity.
When a robot velocity controller is available, one can set these joint velocities to the
low-level robot controller. In this case, the * quantities in the tasks (Section 7.1.1) can
be evaluated using the feedback from the robot sensors, and the robot is said to be
velocity controlled. On the other hand, if the robot velocity control is not available,
one may integrate the outcome of (7.1.16) to obtain desired joint position to be set
to a low-level robot position controller. In this case, the * quantities in (7.1.16) can
be evaluated using the desired integrated quantities instead of the sensor feedback,
and (7.1.16) behaves as an inverse kinematics module. Consequently, the robot is said
to be position controlled.

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment111

7.2 Dynamics-based whole-body QP control layer

The Dynamics-based whole-body QP control layer considers the dynamic model of
the system to ensure the tracking of the desired trajectories. The proposed controller
computes the desired robot joint torque τ , the generalized mixed representation
acceleration B[I]ν̇, and a set of desired spatial contact forces expressed in the mixed
representation Cj [I]fj. Here B[I] = (oB, [I]) is a frame placed on the base of the robot
and oriented as the inertial frame I. On the other hand, Cj[I] = (pj, I) is the frame
associated with the admissible contact (e.g. the foot) where j ∈ N such that 1 ≤ j ≤ nc,
with nc is the number of admissible contacts. The control problem is formulated using
the stack of tasks approach. Similar to the kinematics based whole-body control layer
(Section 7.1), the objective is achieved by transcribing the problem as a constrained
optimization problem. We define the low priority tasks as terms of the cost function.
While the high priority tasks are treated as constraints.

An approach similar to the one presented in this section has been also described
in [Dean-Leon et al., 2019; Del Prete et al., 2016; Englsberger et al., 2018b; Henze
et al., 2016; Mesesan et al., 2019; Nava et al., 2016; Ramuzat et al., 2022]

In the next section, we present the set of low and high priority tasks. For the
sake of clarity, we simplify the notation of the generalized mixed robot velocity and
acceleration by dropping the superscript B[I]. Furthermore the contact wrenches are
stacked into a vector f =

[
C1[I]f⊤

1 C2[I]f⊤
2 . . . Cnc [I]f⊤

nc

]⊤
∈ R6nc

7.2.1 Low and high priority tasks

What follows presents the tasks required to define the control objectives. We denote
by Ψ the equality task and by Φ the inequality task.

Centroidal momentum task

Given a frame Ḡ = (xCoM, [I]), the centroidal momentum rate of change Ḡḣ balances
the external spatial force applied on the robot (3.4.6):

Ḡḣ =
nc∑

j=1

 I3 03×3

(pj − xCoM)× I3

 Cj [I]fj +mḡ, (7.2.1)

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment112

where ḡ =
[
0 0 −g 0 0 0

]⊤
is the 6D gravity acceleration vector. Rearranging

Equation (7.2.1), we obtain

Ḡḣ =
 I3 03×3 . . . I3 03×3

(p1 − xCoM)× I3 . . . (pnc − xCoM)× I3

 f +mḡ (7.2.2a)

= Acf +mḡ. (7.2.2b)

To ask for a desired centroidal momentum trajectory, we specify the following task:

Φh = Ḡḣ
∗ − Acf −mḡ. (7.2.3)

We set the desired linear centroidal momentum rate of change to guarantee the tracking
of the desired center of mass trajectory xref

CoM(t) as

Ḡḣ
p∗ = m

[
ẍref

CoM +Kd
CoM(ẋref

CoM − ẋCoM) +Kp
CoM(xref

CoM − xCoM)
]
. (7.2.4)

Here Kp
CoM and Kd

CoM are positive define diagonal matrices. On the other hand, the
desired angular momentum rate of change Ḡḣ

ω∗ is given by

Ḡḣ
ω∗ = Ḡḣ

ωref +Khω

(
Ḡh

ωref − Ḡh
ω
)
, (7.2.5)

where Khω > 0. If a high-level whole-body planner is available, for instance [Carpentier
et al., 2016], hωref is chosen to satisfy (3.4.4)

Ḡh
ωref = Jpl

CMMω
νpl, (7.2.6)

where the superscript pl indicates that the quantity is computed by the high-level
planner. Another common choice is to set the desired angular momentum equal to
zero, i.e., hωref = 03×1

Similar to the kinematics-based controller case, the centroidal momentum task is
often divided into linear and angular centroidal momentum tasks. The linear task,
denoted by ΨCoM is given by

ΨCoM=
[
I3 03×3

]
Ψh (7.2.7a)

= Ḡḣ
p∗ −

[
I3 03×3

]
Acf −mg (7.2.7b)

= Ḡḣ
p∗ − Acpf −mg (7.2.7c)

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment113

where Ḡḣ
p∗ is chosen as (7.2.4) and Acp is the matrix composed of the first three rows

of Ac. The angular momentum task Ψhω is

Ψhω=
[
03×3 I3

]
Ψh (7.2.8a)

= Ḡḣ
ω∗ −

[
03×3 I3

]
Acf (7.2.8b)

= Ḡḣ
ω∗ − Acω f. (7.2.8c)

Ḡḣ
ω∗ is set equal to (7.2.5). Acω is the matrix composed of the last three rows of Ac.

Cartesian task

While walking, we often require some of the robot link frames to have a specific position
and orientation with respect to the inertial frame. To accomplish this task, we recall
that given a frame L, its acceleration expressed in mixed representation, denoted as
L[I]v̇I,L, is given by

L[I]v̇I,L = JLν̇ + J̇Lν, (7.2.9)

where JL is the mixed velocity Jacobian of the link L (3.2.17) and J̇L its derivative.
To follow a desired Cartesian trajectory IHref

L = (pref
L , IRref

L) ∈ R3 × SO(3), we specify
the following task:

ΨLSE(3) = L[I]v̇∗
I,L − JLν̇ − J̇Lν, (7.2.10)

where L[I]v̇∗
I,L =

[
p̈∗⊤

L
Iω̇∗⊤

I,L

]⊤
is chosen as 2

p̈∗
L = p̈ref

L +Kd
Lp

(ṗref
L − ṗL) +Kp

Lp
(pref

L − pL) (7.2.11a)
Iω̇∗

I,L = Iω̇ref
I,L +Kd

Lω
(Iωref

I,L − IωI,L) +Kp
Lω

Log
(

IRref
L

IR⊤
L

)
. (7.2.11b)

Here Kp
Lp

, Kd
Lp

, Kp
Lω

and Kd
Lω

are positive defined matrices.
Starting from the definition of the SE(3) task (7.2.10), we introduce the positional

and rotational tasks for the frame L, respectively, denoted as ΨLR3 and ΨLSO(3) :

ΨLR3 =
[
I3 03×3

]
ΨLSE(3) (7.2.12a)

= p̈∗
L −

[
I3 03×3

] (
JLν̇ + J̇Lν

)
(7.2.12b)

= p̈∗
L − JLp ν̇ − J̇Lpν, (7.2.12c)

2An efficient implementation of the controller is available at https://github.com/ami-iit/lie-
group-controllers.

https://github.com/ami-iit/lie-group-controllers
https://github.com/ami-iit/lie-group-controllers

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment114

ΨLSO(3)=
[
03×3 I3

]
ΨLSE(3) (7.2.13a)

= Iω̇∗
I,L −

[
03×3 I3

] (
JLν̇ + J̇Lν

)
(7.2.13b)

= Iω̇∗
I,L − JLω ν̇ − J̇Lων. (7.2.13c)

p̈∗
L is given by (7.2.11a), while Iω̇∗

I,L is obtained from (7.2.11b). JLp and JLω are,
respectively, the matrices composed of the first and last three rows of JL.

Floating base dynamics task

To whole-body control layer often considers the base (3.3.8a) and joint dynamics (3.3.8b)
as a set of high priority tasks. In this context, we define the base dynamics task as

Ψdynν
= hν +Mν ν̇ − J⊤

Cν
f. (7.2.14)

On the other hand, the joint dynamics task is given by

Ψdyns
= hs +Ms(q)ν̇ − τ − J⊤

Cs
f, (7.2.15)

where the subscript ν refers to the first 6 rows of the matrix, while s to the last n rows,
with n the number of actuated degrees of freedom of the system.

Joint regularization task

To prevent the controller from providing solutions with huge joint variations, we
introduce a regularization tasks for the joint variables. The task is achieved by asking
for a desired joint velocity that depends on the error between the desired and measured
joint values, such as:

Ψs = s̈∗ −
[
0n×6 In

]
ν̇, (7.2.16)

s̈∗ is equal to
s̈∗ = s̈ref + kd

s(ṡref − ṡ) + kp
s(sref − s). (7.2.17)

Here sref is the desired joint configuration trajectory and is often set constant, i.e.
sref(t) = s̄.

Local ZMP task

Given a desired ZMP position expressed in the Cj[I] frame, we want to define a task
such that the desired contact force in Cj generates Cj [I]xZMPj

. We now recall that, given

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment115

a 6D force Cj [I]fj, the ZMP, if exists, is given by [Vukobratović et al., 2004]

Cj [I]xZMPj
=

−
Cj [I]µjy

Cj [I]fjz

Cj [I]µjx

Cj [I]fjz

 . (7.2.18)

Assuming that Cj [I]fz ≠ 0, i.e., the contact is active, we rearrange Equation (7.2.18) as

Cj [I]fzj

Cj [I]xZMPj
=
−Cj [I]µjy

Cj [I]µjx

 . (7.2.19)

Considering (7.2.19), we define the local ZMP task for the contact Cj as

ΨZMPj
=
Cj [I]xref

ZMPj
e⊤

3 −

0 0 0 0 −1 0
0 0 0 1 0 0

 Cj [I]fj. (7.2.20)

Global ZMP task

In the case all the robot contact lies on the same plane, for example, the robot is
walking on a planar surface, it is possible to ask for a desired global ZMP, denoted
with IxZMP (please note that the suffix j is not present in this case since the ZMP is
considered as a global quantity and not strictly dependent to the contact). Given nc

coplanar contacts, we define the global ZMP as [Kajita et al., 2014, Section 3.2.3]:

IxZMP =
nc∑

j=1

Cj [I]fjz∑nc
i=1 Ci[I]fiz

(
pj + Cj [I]xZMPj

)
. (7.2.21)

By combining (7.2.18) with (7.2.21) we obtain

IxZMP =
nc∑

j=1

Cj [I]fjz∑nc
i=1 Ci[I]fiz

pj +

−
Cj [I]µjy

Cj [I]fjz

Cj [I]µjx

Cj [I]fjz

 . (7.2.22)

Assuming that Cj [I]fjz > 0 we define the global ZMP task as

ΨZMP =
(

Ixref
ZMP

[
e⊤

3 . . . e⊤
3

]
−
[
Γ1 . . .Γnc

])
f, (7.2.23)

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment116

where Γi ∈ R2×6 writes as

Γi =
0 0 pix 0 −1 0
0 0 piy 1 0 0

 . (7.2.24)

Generic variable regularization task

In order to prevent the controller from providing solutions with huge torque τ or
contact force Cj [I]fj, we introduce a regularization task of the form

Ψu = uref − u, (7.2.25)

where u is either the joint torque τ or the contact force Cj [I]fj.

Feasibile contact force task

The feasibility of the contact wrench Cj [I]fj is guaranteed by a set of inequality of the
form:

Φfj : ACj [I] Cj [I]fj ≤ b. (7.2.26)

where ACj [I] is a matrix that depends on the position of the robot joints and on the
base pose.

More specifically, Cj [I]fj must belong to the associated friction cone, while the
position of the local CoP is constrained within the support polygon.

Joint limits task

The feasibility of the joint position s is generally guaranteed by means of a set of
inequalities of the form

s− ≤ s ≤ s+, (7.2.27)

where s− and s+ are respectively the lower and upper joints position limits. In the
case of dynamics-based whole-body controller, the joint values s cannot be arbitrary
chosen. To overcome this issue, we substitute the joint position s in (7.2.27) with its
second-order discrete dynamics computed at time t0 + k d t by applying the forward
Euler method, i.e. s(t0 + (k + 1) d t) = sk+1 = sk + d tṡk + 0.5 d t2s̈k:

s− ≤ sk + d tṡk + 1
2 d t2s̈k ≤ s+. (7.2.28)

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment117

Rearranging (7.2.28) we obtain the final formulation of the joint limits task

Φs : 2s
− − s− d tṡ

d t2 ≤ ṡ ≤ 2s
+ − s− d tṡ

d t2 . (7.2.29)

where we remove the time dependency k.

Feasible joint torque

To guarantee feasible contact torque, we define the following inequality task

Φτ : τ− ≤ τ ≤ τ+, (7.2.30)

where τ− and τ+ represent the maximum negative and positive torque that the joints
can produce.

7.2.2 Quadratic programming problem

The control objective is achieved by transcribing the control problem as a constrained
optimization problem considering the tasks presented in Section 7.2.1. Similarly to
what we discussed for the kinematics-based whole-body controller in Section 7.1, an
equality task Ψ can always be considered as a lower or high priority task, or, in another
word, as a term of the cost function or as an equality constraint. Consequently, this
makes the dynamics based whole-body problem modular3.

From now on, we consider the following set of tasks. The tracking of the left
and right foot poses are considered as high priority SE(3) tasks (7.2.10) and they are
denoted respectively as ΨLSE(3) and ΨRSE(3) . We take into account the CoM tracking
as high priority task (7.2.7) and the global ZMP tracking (7.2.23). We also consider
the base (7.2.14) and the joint dynamics (7.2.15) as high priority tasks. The torso
orientation is implemented as a low priority task SO(3) task (7.2.13) and we denote it
with ΨTSO(3) . Furthermore, the joint postural condition (7.2.16) is also added as a low
priority task. To minimize the joint torques and forces, we also add two regularization
tasks (7.2.25) denoted Ψτ and Ψf . We also ask for a joint torque τ such that the
inequality joint limits task (7.2.30) is satisfied. Finally, to guarantee feasible contact

3The QPTSID class implemented in our framework exploits this modularity to customize the
control problem: https://github.com/ami-iit/bipedal-locomotion-framework/tree/v0.6.0/
src/TSID

https://github.com/ami-iit/bipedal-locomotion-framework/tree/v0.6.0/src/TSID
https://github.com/ami-iit/bipedal-locomotion-framework/tree/v0.6.0/src/TSID

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment118

forces for the left and right feet, we add the task (7.2.26), denoted respectively as ΦfL

and ΦfR .
The above hierarchical control objectives can be cast into a whole-body optimization

problem:

minimize
ν̇, τ, f

Ψ⊤
TSO(3)

ΛT ΨTSO(3) + Ψ⊤
s ΛsΨs + Ψ⊤

f ΛfΨf + Ψ⊤
τ Λτ Ψτ (7.2.31a)

subj. to ΨLSE(3) = 0 (7.2.31b)
ΨRSE(3) = 0 (7.2.31c)
ΨCoM = 0 (7.2.31d)
Ψdynν

= 0 (7.2.31e)
Ψdyns

= 0 (7.2.31f)
ΨZMP = 0 (7.2.31g)
Φs (7.2.31h)
Φτ (7.2.31i)
ΦfL (7.2.31j)
ΦfR (7.2.31k)

Since the decision variables are the robot acceleration ν̇, joint torques τ and the contact
forces Cj [I]fj, and the tasks depend linearly on them, we convert the optimization
problem (7.2.31) into a quadratic programming problem (Section 5.4) and we solve it
via off-the-shelf solvers.

7.3 Experimental results

In this section, we present experiments obtained from several implementations of the
whole-body controllers presented in Sections 7.1 and 7.2. The experimental activities are
carried out with the humanoid robot iCub v2.7 [Metta et al., 2010] – see Section 1.1.1.
To test the whole-body controllers, we decide to exploit the thee-layer controller
architecture – Figure 6.1. In this context, the trajectory optimization layer implements
the DCM planner presented in Section 10.2.1. While the swing foot trajectories are
generated minimizing the spatial acceleration as discussed in Section 10.2.2. The
simplified model control layer implements the instantaneous controller described in
Section 10.2.3.

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment119

The control architecture runs on the iCub head’s computer, namely a 4-th generation
Intel® Core i7 @ 1.7 GHz. In any of its implementations, the architecture takes (on
average) less than 2 ms to evaluate its outputs. The optimization problems are solved
using the OSQP library [Stellato et al., 2018a].

We compare the whole-body controllers using a similar approach presented by
Torricelli et al. [2015]. In all experiments, the humanoid robot walks on a horizontal
ground at a constant speed4. In the following sections, we benchmark the different
implementations of the whole-body controllers, focusing on two main aspects: tracking
and energy consumption performances.

7.3.1 Tracking performances

This section presents the tracking performances analysis of the kinematics-based and
the dynamics-based whole-body controllers.

Kinematics-based walking architecture

To compare the kinematics-based controller architectures, we decide to perform two
main experiments in which the robot walks with two different straight velocity. Namely:

- experiment 1 the forward robot speed is 0.1563 m s−1;

- experiment 2 the forward robot speed is 0.3372 m s−1.

The choice of these velocities derives from the comparison between different simplified
model control layers presented in Section 10.3.

Figures 7.2a and 7.3a show the tracking of the desired positions of the left foot
when the robot is position and velocity controlled, respectively. The position controller
ensures better tracking performance than the velocity one. One may consider increasing
the gains of the controllers (7.1.16), however, increasing too much the gains induces
overall oscillation in the robot.

The aforementioned foot tracking problem worsens at higher walking velocity.
Figure 7.2b shows that the feet’ tracking error is lower than 5 cm on the x axis and
0.5 cm on the z one for position control. Instead, the velocity control in Figure 7.3b
keeps the error always lower than 6 cm and 3 cm on the the x and y components,
respectively.

4We define the walking velocity as the ratio between the step length and the measured step
duration.

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment120

Position Control

0 0.5 1 1.5 2 2.5 3 3.5
0.8

0.9

1

1.1

1.2

1.3

1.4

-0.01

0

0.01

0.02

0.03

(a) 0.1563 m s−1

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

-0.01

0

0.01

0.02

0.03

0.04

(b) 0.3372 m s−1

Figure 7.2 Tracking of the left foot position using Whole-body QP control as inverse
kinematics. (a) Straight velocity 0.1563 m s−1. (b) Straight velocity 0.3372 m s−1.

Velocity Control

0 0.5 1 1.5 2 2.5 3 3.5
0.8

0.9

1

1.1

1.2

1.3

1.4

-0.01

0

0.01

0.02

0.03

0.04

(a) 0.1563 m s−1

0 0.5 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

-0.01

0

0.01

0.02

0.03

0.04

0.05

(b) 0.3372 m s−1

Figure 7.3 Tracking of the left foot position using Whole-body QP control as velocity
control. (a) Straight velocity 0.1563 m s−1. (b) Straight velocity 0.3372 m s−1.

Dynamics-based walking architecture

Controlling the robot using a torque controller architecture is not an easy task.
Indeed, the performance guaranteed by the position/velocity architecture is not

reached because of an imperfect low-level torque control, presence of friction and model
errors. For this reason, to validate the torque architecture, we also decide to present
the simulation results. When the robot is torque controlled, the noise affecting the
measured DCM does not allow us to use the simplified model controllers. Thus we
decided to stabilize a desired CoM instead of DCM. Indeed the simplified model control,
injects a (desired) ZMP that depends on the measured DCM. As the consequence, it
generates undesired vibrations on the robot. We also tried to implement low pass filters

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment121

for mitigating such behavior. However, we did not find the right trade-off for obtaining
overall performance improvements. Although the extensive hand-made tuning of the
simplified model controllers, we were not able to close the loop on the desired DCM.
Tracking down the source of the DCM noise to the measured joint velocities, we decided
to stabilize a desired CoM trajectory instead. In order to maintain consistency with the
previous architectures, we generate such trajectory from the LIPM dynamics (4.4.14a)
starting from a desired DCM trajectory.

Table 7.1 summarizes the maximum velocities achieved using different implemen-
tations of the dynamics-based architecture. The labels simulation and real robot
mean that the experiments are carried out on the Gazebo Simulator [Koenig and
Howard, 2004] or the real platform, respectively. To further test the dynamics based
whole-body controller we decied to perform simulation experiments with two different
implementation of the Simplified model control layer, namely the instantaneous con-
troller (Section 10.2.3) and a model predictive controller (Section 10.2.3). We denote
these two types of controller as instantaneous and predictive in the Table 7.1.

Experiments on the real robot In this section, we present the performance of
the walking architecture when the robot is torque controlled. Figure 7.4a depicts the
CoM tracking performances. It is important to notice that the tracking error on the
x-axis is greater than the one on the y-axis. To reduce this, one may tend to increase
the associated gain. However, our experience showed that increasing the CoM gain
contributes to the overall vibration of the robot.

Figure 7.4b depicts the tracking of the desired left foot trajectory. Event if the
walking velocity is lower than the one used for the kinematics based architecture, the
dynamics based whole-body QP is not able to guarantee good performances. One may
consider increasing the gains of the feet controller (7.2.31b), (7.2.31c), although the
extensive hand-made tuning, we were not able to increase the robot velocity.

Such poor performances may be attributed to the low-level torque controller. Indeed,
as depicted in Figure 7.5 the tracking performance of the low-level torque control

Table 7.1 Maximum forward walking velocities achieved in simulation and in a real
scenario in case of a torque-controlled robot.

Platform Simplified Model Control Max Straight Velocity (m/s)
Real Robot - 0.0186
Simulation Instantaneous 0.2120
Simulation Predictive 0.1448

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment122

Torque Control

0 10 20 30
-0.1

0

0.1

0

0.2

0.4

(a) CoM

0 10 20 30
-0.02

0

0.02

0.04

0.06

0

0.2

0.4

0.6

(b) Left foot

Figure 7.4 Tracking of the CoM (a), and left foot position (b) with whole-body QP
control as torque control.

is poor. One is tempted to increase the gains of the low-level torque controller to
ensure better performances. However, since the iCub robot does not have joint torque
sensors, joint torques are estimated by using the readouts of the force-torque sensors –
Section 1.1.1. We observed that the noise due to the force-torque sensors is harmful to
the estimated torque, and consequently increasing too much the gains causes undesired
overall vibrations.

Experiments on the simulation scenario In this section, we present the simu-
lation results. To simplify the analysis we decide to show only the results when the
robot walks with a forward velocity of 0.1448 m s−1.

Figures 7.6a and 7.7a presents the tracking performance with the instantaneous and
the predictive simplified model controller, respectively. Both implementations guarantee
excellent performances, with a CoM error below 1 cm. Notice that when the simplified
model controller layer is implemented with the instantaneous controller, the whole-
body QP control layer sometimes fails to find an admissible solution. This happens
because the desired ZMP, evaluated using the instantaneous controller, may exit the
feet support polygon, so it may be not feasible. To face this issue we suggest projecting
the desired ZMP onto the support polygon [Englsberger et al., 2011] Figures 7.6b and
7.7b depict the tracking of the desired left foot trajectory. The controller is able to
guarantee a tracking error always below 1 cm.

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment123

Torque Control

10 20 30 40 50 60
time (s)

-10

0

10

20

to
rq

u
e

(N
m

)

Measured Desired

(a) Hip pitch

10 20 30 40 50 60
time (s)

0

10

20

to
rq

u
e

(N
m

)

Measured Desired

(b) Hip roll

10 20 30 40 50 60
time (s)

-10

-5

0

5

to
rq

u
e

(N
m

)

Measured Desired

(c) Hip yaw

10 20 30 40 50 60
time (s)

-10

0

10

20

to
rq

u
e

(N
m

)

Measured Desired

(d) Knee

10 20 30 40 50 60
time (s)

-10

0

10

20

to
rq

u
e

(N
m

)

Measured Desired

(e) Ankle pitch

10 20 30 40 50 60
time (s)

-10

-5

0

5

to
rq

u
e

(N
m

)

Measured Desired

(f) Ankle roll

Figure 7.5 Tracking of the desired joint torques of the left leg.

7.3.2 Energy consumption

To compare the energy efficiency of different control architecture we use the Specific
Energetic Cost. The Specific Energetic Cost is defined as: [Torricelli et al., 2015]

cet = E

mD
, (7.3.1)

where E is the positive mechanical work of the actuation system, m is the mass of the
system, and D is the distance traveled.

Table 7.2 summarizes the Specific Energetic Cost evaluated using different imple-
mentations of the architecture. The labels Simulation and Real Robot mean that the
experiments are carried out on the Gazebo Simulator or the real platform, respectively.
The labels, Position and Torque control, instead, mean that the whole-body QP control

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment124

Instantaneous (simulation)

0 2 4 6
-0.15

-0.1

-0.05

0

0.2

0.4

0.6

0.8

(a) CoM

0 2 4
-0.02

0

0.02

0.04

0

0.2

0.4

0.6

(b) Left foot

Figure 7.6 Instantaneous simplified controller and whole-body controller tracking
in simulation. (a) CoM trajectory. (b) Swing foot trajectory. Forward velocity:
0.1448 m s−1.

layer outputs are either desired joint positions or torque, respectively. We noticed the
Dynamics-based architecture has a lower Specific Energetic Cost than the Kinematics-
based architecture; the reason of this result is attributable to the minimization of the
joint torque when the robot is torque controlled – see Equation (7.2.31a).

7.4 Conclusion

This chapter presents and compares several whole-body controllers for locomotion in a
rigid environment, namely a kinematics-based whole-body controller and a controller
that takes into consideration the dynamics of the system. Thanks to the modularity of
the proposed controller, it is possible to exchange the two implementations depending
on the low-level control interfaces available on the robot. The chapter also presents an
extensive benchmarking of the different whole-body controller implementations in a

Table 7.2 Specific Energetic Cost evaluated in simulation and in a real scenario in case
of torque and position controlled robot.

Platform Whole-Body QP Control Velocity (m/s) cet (J/Kg/m)
Real Robot Position 0.0186 9.66
Real Robot Torque 0.0186 3.85
Simulation Position 0.2120 4.82
Simulation Torque 0.2120 2.55

Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment125

Predictive (simulation)

0 2 4 6
-0.15

-0.1

-0.05

0

0.2

0.4

0.6

0.8

(a) CoM

0 2 4
-0.02

0

0.02

0.04

0

0.2

0.4

0.6

(b) Left foot

Figure 7.7 Predictive simplified controller and whole-body controller tracking in simu-
lation. (a) CoM trajectory. (b) Swing foot trajectory. Forward velocity: 0.1448 m s−1.

three-layer controller architecture. We carry on the test on the Humanoid Robot iCub
v2.7 – see Section 1.1.1.

It is worth mentioning that the presented controllers rely on the assumption of rigid
contacts. In the next chapter, we will attempt to loosen this hypothesis by modeling the
contact between the robot and the environment as a continuous spring-damper system.
The presented contact model will then be considered in the design of a whole-body
controller that allows a simulated version of the humanoid robot iCub to walk on
compliant terrain.

Chapter 8

Whole-Body Controller on Visco
Elastic Environment

In Chapter 7, we introduced a whole-body controller for humanoid robot locomotion in
contact with a stiff environment. When the contact between a robot and its surroundings
is sufficiently rigid, controllers based on the rigid contact assumption may nevertheless
result in satisfactory robot performance. However, when contact compliance reduces
robot performance, it is necessary to design contact models that account for contact
stiffness and damping, which may subsequently be included in feedback controllers.
In light of that, this chapter presents a model of compliant contacts for time-critical
humanoid robot motion control. The proposed model considers the environment as a
continuum of spring-damper systems, allowing us to compute the equivalent contact
force and torque that the environment exerts on the contact surface. We show that
the proposed model extends the linear and rotational springs and dampers, classically
used to characterize soft terrains, to the case of large contact surface orientations.
The contact model is then used for the real-time whole-body control of humanoid
robots walking in visco-elastic environments. The overall approach is validated by
simulating walking motions of the iCub humanoid robot. Furthermore, we compare
the proposed whole-body control strategy with state-of-the-art approaches. In this
respect, we investigate the terrain compliance that makes the classical approaches that
assumes rigid contacts fail. We finally analyze the robustness of the presented control
design with respect to non-parametric uncertainty in the contact model.

The chapter is organized as follows: Section 8.1 presents the model used to char-
acterize the interaction between the robot and the environment. Section 8.2 details
the whole-body controller for walking on compliant surfaces. The section also contains

Whole-Body Controller on Visco Elastic Environment 127

the design of an observer to estimate the contact parameters. Section 8.3 presents
the simulation results on the iCub humanoid robot v2.7 – see Section 1.1.1. Finally,
Section 8.4 concludes the chapter.

The content of this chapter appears in:

Romualdi, G., Dafarra, S., and Pucci, D. (2021). Modeling of Visco-
Elastic Environments for Humanoid Robot Motion Control. IEEE
Robotics and Automation Letters, 6(3):4289–4296

Video https://www.youtube.com/watch?v=7XKQ5ZWJvYU
GitHub ami-iit/romualdi-2021-ral-soft_terrain_walking

8.1 Modeling of visco-elastic environments

Let us now consider a rigid body that makes a contact with a visco-elastic surface, and
we assume that:

1. there exists an inertial frame I;

2. there exist a frame B rigidly attached to the body and we denote oB the origin
of the frame and [B] its orientation;

3. all the point of the rigid body in contact with the environment define a set
denoted with Ω ∈ R3 and named contact domain, we denote with Bx a point on
the contact surface expressed in the frame B, while with Ix the very same point
expressed in the inertial frame I;

4. the environment characteristics are isotropic;

5. the rigid body moves with a 6D velocity, denoted as B[I]v such that

B[I]v =
 I ȯB

IωI,B

 (8.1.1)

where B[I] = (oB, [I]) is a frame having the origin in oB and oriented as I.

https://www.youtube.com/watch?v=7XKQ5ZWJvYU
https://github.com/ami-iit/romualdi-2021-ral-soft_terrain_walking

Whole-Body Controller on Visco Elastic Environment 128

oB

I

oB B

B

Ω

X

Figure 8.1 2D representation of the visco-elastic model. The gray rectangle represents
the zero-force rigid body position. The orange rectangle is the body. Ω is the contact
domain while X̄ is equal to Ω if the contact wrench is null B[I]f = 0. The interaction
between the rigid body and the environment can be approximate as a continuum of
spring-damper systems.

6. ∀x ∈ Ω, there exists a continuous pure force distribution that depends on the
point Ix and its velocity I ẋ, i.e.,

ρx : R3 × R3 → R3. (8.1.2)

Figure 8.1 shows a rigid body in contact with a visco-elastic environment.
Each point of Ω may define a different function ρx. For the sake of simplicity, we

assume that ρx is the same for each point in contact with the environment. Consequently,
we drop the subscript x in Equation (8.1.2). Given the above assumptions, the contact
torque distribution about a point oB ∈ R3, σoB

: R3 × R3 → R3 writes

σoB

(
Ix, I ẋ

)
=
(

Ix− oB

)
× ρ

(
Ix, I ẋ

)
. (8.1.3)

Once the pure force and torque distribution are defined, then the equivalent contact 6D
force expressed in mixed representation is given by [Caron et al., 2015] – Section 4.2:

B[I]f =
 If

B[I]µ

 =
 ∫

Ω ρ d Ω∫
Ω σoB

d Ω

 . (8.1.4)

We now propose a model that can be used to describe the contact between a body
and a compliant environment.

Whole-Body Controller on Visco Elastic Environment 129

Lemma 1. Let X̄ the set of points x̄ ∈ R3:

X̄ = {x̄ ∈ R3 : ρ(x̄, 0) = 0}. (8.1.5)

Assume that: i) the contact domain Ω is a rectangle of dimensions l and w; ii) the
point oB∈R3 is the center of the rectangular domain; iii) the distribution ρ is given by:

ρ
(

Ix, I ẋ
)

= k
(

I x̄− Ix
)
− b I ẋ, (8.1.6)

with k > 0 and b > 0.
Then, the equivalent contact force and torque B[I]f (8.1.4) are given by

If = lw|e⊤
3

IRBe3|[k(ōB − oB)− bȯB] (8.1.7a)

B[I]µ = lw

12 |e
⊤
3

IRBe3|{
l2(IRBe1)× [b(IRBe1)× IωI,B + k

I
R̄Be1] (8.1.7b)

+ w2(IRBe2)× [b(IRBe2)× IωI,B + k
I
R̄Be2]

}
,

where IRB is the rotation from the inertial frame I to a frame rigidly attached to the
body B. ȯB and IωI,B are the linear and angular velocity of the rigid body expressed in
mixed representation. ōB and I

R̄B are the position and the rotation of the frame B
such that in case of zero velocity, the 6D force is null.

The set X̄ can also be defined by considering a point P that belongs to the contact
domain Ω of the rigid body B in contact with the compressible environment. Then,
the point P can move to a point P0 of the space such that the force distribution at the
point P0 is zero. In coordinates, let P be defined by the coordinate vector xp ∈ R3 and
P0 be defined by the coordinate vector x̄p ∈ R3. Then given xp

ρ(x̄p, 0) = 0. (8.1.8)

X̄ contains all the points x̄p associated with each point P belonging to the contact
domain Ω. The proof of Lemma 1 is in Appendix B.

Lemma 1 shows that the 6D contact force (8.1.4) depends only on the distribution
of the contact force ρ on the shape of the contact domain Ω and on the rigid body state,
namely position, orientation, linear and angular velocity. As a consequence, we avoid
using rotational springs and dampers to describe the interaction between the robot and

Whole-Body Controller on Visco Elastic Environment 130

Visco-Elastic
Environment

Rigid Body position
at impact

Rigid Body

Figure 8.2 Vector field generated by the visco-elastic model – Equation (8.1.6). The
grey box represents the zero-force rigid-body position. The green parallelepiped is the
body. The arrows represent the forces that act on the contact surface; the lighter the
color, the higher the force magnitude.

the environment. Furthermore, Lemma 1 also contains a close solution for the equivalent
contact wrench (8.1.7a) (8.1.7b) in the case of a linear contact model (8.1.6) and a
rectangular contact surface Ω. As a consequence, it can be exploited in hard-real-time
applications such as control architectures. To give the reader a better understanding,
we can imagine that the set X̄ contains the position of all the points on the foot sole
at the touch down. Once the contact is established, the environment is deformed. The
interaction between the foot and the environment is then approximated as a continuum
of spring-damper systems – Equation (8.1.6). Each spring-damper system exerts a
force on the associated point of the contact domain. Combining all forces, we can
imagine that the rigid body is subject to the vector field represented in Figure 8.2.
Finally, we want to recall that, since the contacts are unilateral, this model is valid
as long as the normal forces are positive and the tangential component lies inside the
friction cone.

8.1.1 Linear approximation of the visco-elastic model

It is worth noting that the model (8.1.7a)-(8.1.7b) also encompasses the classical linear
modeling techniques for soft terrains. The following corollary shows, in fact, that linear
approximations of (8.1.7a)-(8.1.7b) lead to linear and rotational springs and dampers
that are usually used to model contact wrenches due to soft terrains [Sygulla and
Rixen, 2020, Equation (8)].

Whole-Body Controller on Visco Elastic Environment 131

Corollary 1. Let If and B[I]µ be the contact force and torque given by (8.1.7a) and
(8.1.7b), respectively. Assume that I

R̄B = I3 and IRB is approximated with its first
order of the Taylor expansion, i.e., IRB = I3 +Θ×, with Θ ∈ R3. Assume that Θ repre-
sents the classical sequence of roll-pitch-yaw, namely IRB(Θ) = Rz(Θ3)Ry(Θ2)Rx(Θ1).
Then, the contact model (8.1.7a)-(8.1.7b) writes

Ifl = Kl(ōB − oB)− BlȯB, (8.1.9a)

B[I]µl = −KaΘ− BaΘ̇, (8.1.9b)

with

Kl = lwkI3, Ka = k
lw

12

w2 0 0
0 l2 0
0 0 l2+w2

 (8.1.10)

Bl = lwbI3, Ba = b
lw

12

w2 0 0
0 l2 0
0 0 l2+w2

 (8.1.11)

The proof of Corollary 1 is in Appendix C. Corollary 1 thus shows that the
model (8.1.7a)-(8.1.7b) extends the linear models [Sygulla and Rixen, 2020] to the case
of large contact surface orientations.

Here, we want to underline that the classical linear approaches for modeling
compliant contacts (8.1.9) – for example, rotational springs and dampers [Sygulla
and Rixen, 2020] – are often valid only for small contact surface rotations. This is
due to the minimal representation (i.e., three angles, such as roll, pitch, yaw) used to
represent SO(3). In addition, the equivalent rotational stiffness and dampers values
Ka and Ba are often not related to the physical parameters of the contact. On the
other hand, even if the model we propose (8.1.7a)-(8.1.7b) is indeed a 6d force, it is
obtained by integrating pressure and shear stresses distributions to better catch the
fundamental effects of the contact physics, without having the aforementioned issues
of classical rotational spring and damper models.

Let us now introduce the approximation error between the linear model (8.1.9) and
the model presented (8.1.7) as ϵf = B[I]f − B[I]fl. Figure 8.3 shows the last component
of the error ϵf , i.e., e⊤

6 ϵf , in the case of zero velocity and zero pitch and roll angles. The
higher the angle, the greater the difference. Thus, the higher is the angle, the less valid
the linear approximation is. A similar analysis holds also for the other components
of the 6D force. To conclude, the model presented in Lemma 1 is not equivalent to a

Whole-Body Controller on Visco Elastic Environment 132

-60 -40 -20 0 20 40 60
-40

-20

0

20

40

Figure 8.3 Linear approximation error for different values of yaw angle.

linear lumped contact model, but it can be seen as a non-linear generalization while
keeping a low mathematical complexity.

8.2 Whole-body controller

The whole-body controller aims to track kinematic and dynamic quantities. The
proposed whole-body controller computes the desired joint torques using the robot
joint dynamics (3.3.8b), where the robot acceleration ν̇ is set to the desired starred
quantity and the contact wrenches Ck[I]fk are estimated or measured:

τ ∗ = Ms(q)ν̇∗ + hs(q, ν)−
nc∑

k=1
J⊤

Cks
(q) Ck[I]fk. (8.2.1)

The desired generalized robot acceleration ν̇∗ is chosen to follow the desired cen-
troidal momentum trajectory, the torso and root orientation, and the feet pose, while
considering the contact model presented in Section 8.1.

The control problem is formulated using the stack of tasks approach. The control
objective is achieved by framing the controller as a constrained optimization problem
where the low priority tasks are embedded in the cost function, while the high priority
tasks are treated as constraints.

Whole-Body Controller on Visco Elastic Environment 133

8.2.1 Low and high priority tasks

What follows presents the tasks required to evaluate the desired generalized robot
acceleration ν̇∗.

Centroidal momentum task

In case of visco-elastic contacts, the contact wrench Ck[I]fk cannot be arbitrarily chosen.
From now on, we assume that we can control the contact wrench derivative Ck[I]ḟk.
Thus, by differentiating the centroidal momentum dynamics (3.4.5), we obtain:

Ḡḧ =
nc∑

k=1

 03×3 03×3(
I ṗk − ẋCoM

)
× 03×3

 Ck[I]fk +
 I3 03×3(

Ipk − xCoM
)
× I3

 Ck[I]ḟk (8.2.2)

To follow the desired centroidal momentum trajectory, we minimize the weighted norm
of the error between the robot centroidal momentum and the desired trajectory:

Ψh = 1
2
∥∥∥Ḡḧ

∗ − Ḡḧ
∥∥∥

Λh

, (8.2.3)

where Λh is a positive definite diagonal matrix. Ck[I]fk is the estimated/measured contact
wrench. Ḡḧ

∗ is the desired centroidal momentum derivative, and it is responsible for
stabilizing the desired centroidal momentum dynamics:

Ḡḧ
∗ = Ḡḧ

ref + kd
h(Ḡḣ

ref − Ḡḣ) + kp
h(Ḡh

ref − Ḡh)

+ ki
h

∫
Ḡh

ref − Ḡh d t,
(8.2.4)

where the integral of the angular momentum is computed numerically. Here, kd
h, kp

h,
and ki

h are three diagonal matrices. When the equality holds, the centroidal dynamics
converges exponentially to the reference value if and only if kp

h, ki
h and kd

hk
p
h − ki

h are
positive definite.

Torso and root orientation tasks

While walking, we require the torso and the root frames to have a specific orientation
with respect to the inertial frame. To accomplish this task, we minimize the norm of the

Whole-Body Controller on Visco Elastic Environment 134

error between a desired angular acceleration and the actual frame angular acceleration:

Ψ◦ = 1
2
∥∥∥ω̇∗

◦ − (J̇◦ν + J◦ν̇)
∥∥∥2

Λ◦
, (8.2.5)

where the subscript ◦ indicates the frames of root R and torso T . Λ◦ is a positive
definite matrix that weighs the contributions in different directions. ω̇∗

◦ is set to
guarantee almost global stability and convergence of IR◦ to IRref

◦ [Olfati-Saber, 2001]:

ω̇∗
◦ = ω̇ref − c0

(
ω̂ IR◦

IRref⊤
◦ − IR◦

IRref⊤
◦ ω̂ref

)∨

− c1
(
ω − ωref

)
− c2

(
IR◦

IRref⊤
◦

)∨
. (8.2.6)

Here, c0, c1, and c2 are positive numbers.

Swing foot task

Concerning the tracking of the swing foot trajectory, we minimize the following cost
function

ΨF = 1
2
∥∥∥v̇∗

F − (J̇Fν + JF ν̇)
∥∥∥2

ΛF

, (8.2.7)

the angular part of v̇∗
F is given by (8.2.6) where the subscript ◦ is replaced by F , while

the linear part p̈∗ is equal to p̈∗
F = p̈ ref

F − kd
xf

(ṗF − ṗref
F)− kp

xf
(pF − pref

F). Here, the gains
are again positive definite matrices.

Regularization tasks

In order to prevent the controller from providing solutions with huge joint variations,
we introduce a regularization task for the joint variables. The task is achieved by
asking for a desired joint acceleration that depends on the error between the desired
and measured joint values, namely:

Ψs = 1
2
∥∥∥kp

s(sref − s)− kd
s ṡ− s̈

∥∥∥2

Λs

, (8.2.8)

where sref is a desired joint configuration, kd
s , kp

s and Λs are symmetric positive definite
matrices. To reduce the amount of the contact wrench required to accomplished the

Whole-Body Controller on Visco Elastic Environment 135

centroidal momentum tracking, the following task is considered:

Ψfk = 1
2
∥∥∥kp

f

(
Ck[I]fref

k − Ck[I]fk
)
− Ck[I]ḟk

∥∥∥2

Λfk

. (8.2.9)

Here, Λfk
and kp

f are positive definite matrices. Ck[I]fk is the estimated/measured
contact wrench and Ck[I]fref

k is the desired force regularization value.

Contact wrench feasibility

The feasibility of the contact wrenches Ck[I]fk is generally guaranteed by another set of
inequalities of the form:

ACk[I] Ck[I]fk ≤ b. (8.2.10)

where ACk[I] is a matrix that depends on the position of the robot joints and the base
pose.

More specifically, Ck[I]fk must belong to the associated friction cone, while the
position of the local CoP is restricted within the support polygon. However, in the
case of visco-elastic contacts, the contact wrenches cannot be arbitrarily chosen. This
limitation can be overcome by discretizing the contact wrench dynamics using the
forward Euler method:

Ck[I]fi+1
k = Ck[I]fi

k + Ck[I]ḟi
k d t, (8.2.11)

where T is the constant integration time. We can require the contact wrench at the
next instant to guarantee the inequality constraints (8.2.10). Combining (8.2.11) and
(8.2.10), we can now obtain a tractable set of inequality constraints

ACk[I] Ck[I]ḟk d t ≤ b− ACk[I]fk, (8.2.12)

where the superscript i has been dropped, and Ck[I]fk represents the measured/estimated
contact wrench.

Floating-base system base dynamics

The whole-body controller considers the base system dynamics presented in Equa-
tion (3.3.8a) as:

Mν ν̇ + hν =
nc∑

k=1
J⊤

Ck Ck[I]fk. (8.2.13)

where Ck[I]fk are the measured/estimated contact wrenches.

Whole-Body Controller on Visco Elastic Environment 136

Contact model dynamics

The contact wrench dynamics can be obtained by differentiating equations (8.1.7a) and
(8.1.7b). By computing the time derivative of f , one has the following control-affine
dynamical system:

Ck[I]ḟk = hfk + gfk
Ck[I]v̇Fk

(8.2.14)

where hfk ∈ R6 and gfk ∈ R6×6 is full rank for each possible admissible state. By
explicating the dependence on the robot generalized acceleration, Equation (8.2.14)
writes as:

Ck[I]ḟk = hfk + gfk

(
JFk

(q)ν̇ + J̇Fk
(q)ν

)
. (8.2.15)

8.2.2 Quadratic programming problem

The control objective is achieved by casting the control problem as a constrained
optimization problem whose conditional variables are ν̇ and ḟk where k represents the
foot in contact with the environment, namely left, right, or both. In details:

minimize
ν̇,ḟk

Ψh + ΨT + ΨR + ΨF + Ψs + Ψfk (8.2.16a)

subject to ACk[I] Ck[I]ḟk dT ≤ b− ACk[I] Ck[I]fk (8.2.16b)

Mν ν̇ + hν =
nc∑

k=1
J⊤

Ck Ck[I]fk (8.2.16c)

Ck[I]ḟk = hfk + gfk

(
JFk

(q)ν̇ + J̇Fk
(q)ν

)
. (8.2.16d)

We notice that the system base dynamics (8.2.13) and the contact dynamics (8.2.15)
depend linearly on the decision variables ν̇ and Ck[I]fk. Furthermore, the tasks presented
in Section 8.2.1 depend quadratically on the decision variables. Consequently, the
optimization problem in (8.2.16) can be transcribed into a quadratic programming
problem (see Section 5.4) and solved via off-the-shelf solvers. Once the desired robot
acceleration ν̇∗ is computed, the desired joint torques can be easily evaluated with
Equation (8.2.1).

8.2.3 Contact parameters estimation

The optimal control problem presented in Section 8.2.1 is based on the perfect knowledge
of the contact parameters k and b. In a simulated environment, the value of the

Whole-Body Controller on Visco Elastic Environment 137

Whole-body
QP Controller

Simulator

Forward dynamics (3.3.1)
Lemma 1

∫
ν, ν̇

q, ν

Contact Parameters
Estimator

Gh
ref,G ḣ

ref,G ḧ
ref

τ ∗

IRref
R ,I Rref

T ,I ωref
I,R,

I ωref
I,T

IHref
F ,F [I] vref

I,F ,
F [I] v̇ref

I,F

F [I]fref, sref

k, b

q, ν

F [I]f

Figure 8.4 Controller architecture.

parameters is perfectly known. However, in the real scenario, an estimation algorithm
is required to compute the parameters.

The contact model described by Equations (8.1.7a) and (8.1.7b) is linear with respect
to the contact parameters as B[I]f = Y(oB,

IRB, ȯB,
IωI,B)π, where Y(oB,

IRB, ȯB,
IωI,B) ∈

R6×2 is the regressor and is equal to

Y = lw|e⊤
3 Re3|

 ōB − oB −ȯB

l2

12 ((Re1)×) R̄e1 + w2

12 ((Re2)×) R̄e2
[

l2

12 ((Re1)×)2 + w2

12 ((Re2)×)2
]
ω

(8.2.17)

where, for sake of clarity, we removed all the prefixes and suffices. π ∈ R2 contains the
spring and damper coefficients, i.e.,

π =
k
b

 . (8.2.18)

We aim to estimate the contact parameters π̂ so that the least-squares criterion is
minimized. Namely, we seek for π̂ such that the error between the measured contact
forces and the predicted contact force is minimized over a time windows having a
length of t samples:

π̂t = arg min
π

1
2

t∑
i=1

∥∥∥B[I]f[i]− Yiπ
∥∥∥2

Γi

. (8.2.19)

Whole-Body Controller on Visco Elastic Environment 138

Here, Γi ≻ 0 is a strictly positive definite matrix. B[I]f[i] and Yi represent the forces
and the regressor computed at instant i.

We solved this problem by applying the Recursive least squares (RLS) filter [Ljung,
1999, Section 11.2] as:

π̂t = π̂t−1 + Lt

[
B[I]f[t]− Ytπ̂t−1

]
, (8.2.20)

where B[I]f[t]− Ytπ̂t−1 is the innovation at time t. The gain Lt ∈ R2×6 is given by:

Lt = Pt−1Y⊤
t

[
Γt + YtPt−1Y⊤

t

]−1
, (8.2.21)

Pt−1 is the estimation error covariance at the instant t− 1:

Pt = [I2 − LtYt]Pt−1 [I2 − LtYt]⊤ + LtΓtL
⊤
t . (8.2.22)

At every time step, Equations (8.2.20)-(8.2.21)-(8.2.22) are used to estimate the
contact parameters k and b.

In the case of zero linear and angular velocity, the last three columns of Y are zero,
so the damper parameter is not observable when the contact surface does not move.
Walking simulations we performed tend to show that the foot velocity is almost always
different from zero when in contact with the ground. So, the contact parameters are,
in practice, observable during robot walking.

Equations (8.2.20)-(8.2.21)-(8.2.22) are historically derived from the recursive least
square theory [Hayes, 1996, Section 9.3] and [Ljung, 1999, Section 11.2]. However, we
notice that the very same results can be obtained by designing a Kalman filter [Kalman,
1960]1 considering the following dynamical system

πt+1 = πt, (8.2.23)

1Considering a Linear Time Invariant discrete (LTI) dynamical system of the form

xk+1 = Fxk + Guk + wk

zk = Hxk + vk

where xk is the state of the system, uk is the exogenous input, zk is the measurement vector. wk is the
process noise vector that is assumed to be zero-mean Gaussian with covariance Q, i.e.„ wk ∼ N (0, Q).
vk is the measurement noise vector. It is assumed to be zero-mean Gaussian with covariance R, i.e.„
vk ∼ N (0, R). The Kalman filter [Kalman, 1960] is a recursive algorithm that estimates the state xk

starting from a series of measurements. It is possible to prove that the Kalman filter is the optimal
observer in the case of linear dynamics and Gaussian noises wk and vk.

Whole-Body Controller on Visco Elastic Environment 139

having as a measurement equation

B[I]f[t] = Ytπt + ψt, (8.2.24)

where ψ is a white Gaussian noise having zero mean and covariance E
[
ψtψ

⊤
t

]
= Γt.

8.3 Results

In this section, we present the simulation tests of the control strategy presented in Sec-
tion 8.2. The proposed strategy is also compared with the task-based inverse dynamics
algorithm that considers rigid contacts presented in Section 7.2. From now on, the
proposed control approach is called TSID-Compliant, and the controller of Section 7.2
TSID-Rigid. The experiments are carried out on a simulated version of the humanoid
robot iCub v2.7 [Metta et al., 2010] – Section 1.1.1. The architecture takes (on average)
less than 1 ms to evaluate its outputs. The OSQP [Stellato et al., 2018a] library is used
to solve the optimization problems. The code is open source it is available at https://
github.com/dic-iit/Romualdi-2021-RAL-soft_terrain_walking. Simulations are
obtained by integrating the robot forward dynamics (FD) obtained from (3.3.1). Fig-
ure 8.4 shows the connection between the whole-body controller the contact parameter
estimator and the simulator. The FD is evaluated with the contact model in Lemma 1
perturbed with a zero-mean Gaussian noise.

To validate the performance of the proposed architecture, we present three main
experiments. First, we compare the performances of the TSID-Compliant and the
TSID-Rigid controllers in case of different contact parameters. Second, we analyze the
robustness of the TSID-Compliant in case of non-parametric uncertainty in the contact
model. Finally, we show the contact parameter estimation performances in case of
anisotropic environment. In all scenarios, the robot walks straight and the maximum
velocity is 0.17 m s−1.

8.3.1 Comparison between TSID-Compliant and TSID-Rigid

Table 8.1 summarizes the outcome of the control strategies for different contact param-
eters. Labels success and failure mean that the associated controller is able or not to
ensure that the robot is balanced while walking.

To compare the two controllers, we decided to perform three main experiments. In
the first experiment, we choose a set of contact parameters such that both whole-body

https://github.com/ami-iit/Romualdi-2021-RAL-soft_terrain_walking
https://github.com/ami-iit/Romualdi-2021-RAL-soft_terrain_walking

Whole-Body Controller on Visco Elastic Environment 140

Figure 8.5 A simulation of the iCub robot walks with the TSID-Compliant controller.

controllers guarantee balance while walking. In the second, we keep the damper
coefficient b constant, and we decrease the spring coefficient k. Finally, in the third
experiment, we keep k constant and decrease b. Namely:

- Experiment 1 k = 2× 106 N/m3, b = 1× 104 Ns/m3;

- Experiment 2 k = 1× 106 N/m3, b = 1× 104 Ns/m3;

Table 8.1 Outcomes of whole-body controllers implementation on compliant terrain
walking.

TSID Type k (N/m3) b (Ns/m3) Outcome
Compliant 8× 105 1× 104 Success
Compliant 1× 106 1× 104 Success
Compliant 2× 106 1× 104 Success
Compliant 8× 105 1× 103 Success
Compliant 2× 106 1× 103 Success
Compliant 1× 106 1× 103 Success

Rigid 8× 105 1× 104 Failure
Rigid 1× 106 1× 104 Failure
Rigid 2× 106 1× 104 Success
Rigid 8× 105 1× 103 Failure
Rigid 1× 106 1× 103 Failure
Rigid 2× 106 1× 103 Failure

Whole-Body Controller on Visco Elastic Environment 141

k = 2× 106 N/m3 b = 1× 104 Ns/m3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.05

0

0.05

0.1

0.15

0.2

-0.1

-0.05

0

0.05

0.1

(a) CoM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

100

200

300

400

(b) Normal contact force

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(c) Foot trajectory

Figure 8.6 Comparison between TSID-Rigid and TSID-Compliant.

- Experiment 3 k = 2× 106 N/m3, b = 1× 103 Ns/m3.

Experiment 1

Figure 8.6a depicts the CoM tracking performance obtained with the TSID-Compliant
and the TSID-Rigid. Both controllers seem to show good tracking performances, and
the CoM error is kept below 1 cm in both cases. Note that the TSID-Rigid controller
induces faster variations in the measured contact wrenches – Figure 8.6b. This
contributes to the overall higher vibrations of the robot. One reason for this behavior
is that the TSID-Rigid assumes full control on the desired contact wrenches. This
assumption is generally valid for stiff contacts, but it does not hold if the environment is
compliant. Figure 8.6c presents the left foot trajectory when the whole-body controller
is either TSID-Compliant or TSID-Rigid. The TSID-Compliant ensures a smoother
foot motion when it is in contact with the environment (1.5 s < t < 3.5 s).

Experiment 2

There is no significant difference between the CoM tracking obtained with the two
implementations of the whole-body controller – Figure 8.7a for t < 1 s. However,

Whole-Body Controller on Visco Elastic Environment 142

k = 2× 106 N/m3 b = 1× 103 Ns/m3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.05

0

0.05

0.1

0.15

0.2

-0.1

-0.05

0

0.05

0.1

(a) CoM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

100

200

300

400

(b) Normal contact force

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(c) Foot trajectory

Figure 8.7 Comparison between TSID-Rigid and TSID-Compliant. At t ≈ 1.75 s, the
TSID-Rigid makes the robot fall down.

k = 1× 106 N/m3 b = 1× 104 Ns/m3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.05

0

0.05

0.1

0.15

0.2

-0.1

-0.05

0

0.05

0.1

(a) CoM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

100

200

300

400

(b) Normal contact force

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(c) Foot trajectory

Figure 8.8 Comparison between TSID-Rigid and TSID-Compliant. At t ≈ 0.9 s, the
TSID-Rigid makes the robot fall down.

Whole-Body Controller on Visco Elastic Environment 143

k = 8× 106 N/m3 b = 1× 104 Ns/m3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1

0

1

2

3

4

(a) x coordinate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-6

-4

-2

0

2

4

6

(b) y coordinate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-4

-3

-2

-1

0

1

2

(c) z coordinate

Figure 8.9 Linear momentum tracking for different values of σ. At t ≈ 4 s and σ = 20
the robot fall down.

Contact parameter estimation

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
time (s)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

k
(N

/m
3
)

#10 6

2000

4000

6000

8000

10000

12000

b
(N

s/
m

3
)

Ground truth Expected value Con-dent region

(a) Fixed b and varying k

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
time (s)

0.96

0.98

1

1.02

1.04

1.06

k
(N

/m
3
)

#10 6

6000

7000

8000

9000

10000

11000

12000

b
(N

s/
m

3
)

Ground truth Expected value Con-dent region

(b) Fixed k and varying b

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
time (s)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

k
(N

/m
3
)

#10 6

0

2000

4000

6000

8000

10000

b
(N

s/
m

3
)

Ground truth Expected value Con-dent region

(c) Varying k and b

Figure 8.10 Estimation of the contact parameters. The contact wrench is perturbed
with zero-mean Gaussian noise with σ = 5.

the lower the damper parameter b, the higher the acceleration required to change

Whole-Body Controller on Visco Elastic Environment 144

the contact wrench. This contrasts with the assumption of zero-foot accelerations
of the TSID-Rigid controller – see Equation (3.3.7). Consequently, the TSID-Rigid
generates fast vibrations of the measured contact wrench and on the foot position –
Figures 8.7b and 8.7c, respectively. Clearly, these poor performances induce a bad
tracking of the CoM shown in Figure 8.7a at t ≈ 1.5 s, and consequently the robot
falls down. A possible solution to mitigate this problem is to increase the CoM gain in
the TSID-Rigid controller. This unfortunately gives rise to higher robot oscillations,
which in turn degrade the CoM tracking, and still the robot falls, or even worse, the
controller may not be able to find a feasible solution.

Experiment 3

The CoM tracking problem presented in Experiment 2 worsens at lower values of the
contact parameter k. Figure 8.8a shows the CoM tracking performances of the two
controllers. The TSID-Compliant is still capable of ensuring good performance. On
the other hand, the TSID-Rigid generates faster variations on the measured contact
wrenches and foot positions – Figures 8.6b and 8.6c, respectively. Consequently,
the controller, to maintain balance, requires high variations of the joint accelerations
and at t ≈ 0.9 s fails while searching for feasible joint torques. Although tuning the
TSID-Rigid controller may mitigate this problem, we were only able to postpone the
failure.

8.3.2 Robustness of the TSID-Compliant

In this section, we present the robustness capabilities of the TSID-Compliant controller
in case of non-parametric uncertainty in the contact model.

We model the non-parametric uncertainty by using an additive white Gaussian
noise. So, the contact wrench acting on the robot becomes fm

k = fk + ϵ, where ϵ is
sampled from a Gaussian distribution with zero mean and standard deviation σ. f
is the contact wrench computed with the contact model (B.0.7). Figure 8.9 shows
the linear momentum tracking performance obtained with different values of σ. The
experiments are performed in the case of k = 8× 106 N/m3 and b = 1× 104 Ns/m3,
however, similar considerations hold for the other sets of parameters – see Table 8.1.
The higher σ, the higher is the tracking error. The controller is capable of guaranteeing
good tracking performance for all σ < 20. Indeed, at σ = 20 the controller is no longer
able to guarantee acceptable performances and at t ≈ 4 s the robot falls down.

Whole-Body Controller on Visco Elastic Environment 145

8.3.3 Anisotropic environment

In this section, we show the performance of the contact parameter estimator in the
case of an anisotropic environment. We model the contact parameters as a piecewise
function of the forward walking direction assuming that all points of the contact surface
have the same contact parameters. Also, to further test the robustness of the estimator,
we add a zero-mean Gaussian noise (with standard deviation σ = 5) to the contact
wrench. To deal with contact parameter discontinuities, we reset the state covariance
in the recursive least squares algorithm [Colman and Wells, 2006]. Each time a foot
impacts the ground, the covariance is reset to the initial value. Figure 8.10a shows the
performance of the estimator in the case of b = 1× 104 Ns/m3 and a space-dependent
k. The discontinuity on the ground truth (t ≈ 6 s and t ≈ 9 s) occurs when the swing
foot makes contact with the environment. The observed parameters converge to the
ground truth in less than a second. The accompanying video shows that during the
transient phases (e.g. t ≈ 6.5 s), the controller achieves good overall performance.
Similar considerations hold in the case k = 1× 106 N/m3 and varying b – Figure 8.10b
and space varying k and b – Figure 8.10c.

8.4 Conclusions

This chapter presents the development of a contact model to represent the interaction
between the robot and the environment. Unlike state-of-the-art models, we consider
the environment as a continuum of spring-damper systems. This allows us to compute
the equivalent contact wrench by integrating the pressure distribution over the contact
surface. As a result, rotational springs and dampers are not required to model the
interaction between the robot and the environment. We also develop a whole-body
controller that stabilizes the robot while walking in a compliant environment. Finally,
an estimation algorithm is also introduced to compute the contact parameters in
real-time. The proposed controller is then compared with the whole-body controller
presented in Chapter 7. We analyze the robustness properties of the architecture
with respect to non-parametric uncertainty in the contact model. Finally, we study
the performance of the contact parameter estimation in the case of an anisotropic
environment. It is worth mentioning that the controller introduced in this chapter
assumes that the flexibility is located in the surrounding environment, while the robot
is considered rigid. In Chapter 9 we will consider that the robot link deforms during

Whole-Body Controller on Visco Elastic Environment 146

the locomotion task, while the environment is considered rigid. We characterize the
link flexibility by introducing equivalent passive joints where the link deflection is
concentrated.

Chapter 9

Whole-Body Control of Humanoid
Robots with Link Flexibility

In Chapter 7, we presented a whole-body controller for humanoid robots in contact
with a rigid environment. We then extended the controller in the case of visco-elastic
walking surface – Chapter 8. However, both architectures assume that the links of the
robot do not deform during the locomotion task. This hypothesis is generally valid;
however, it may happen that one of the links of the system flexes while walking. In
this chapter, we attempt to loosen the rigid body hypothesis that has been considered
in Chapters 7 and 8. More specifically, we extend the whole-body controller introduced
in Section 7.2 in the case of a humanoid robot affected by undesired link flexibility.

We characterize the link flexibility by introducing equivalent passive joints where
the link deflection is concentrated [Nakaoka et al., 2007]. We extend the robot state to
consider the underactuated flexible joints in the model. Thanks to this choice, we are
able to design a whole-body controller that implicitly considers the deformation of the
joints. Since in our case the deflection is not directly measurable, we design an observer
aiming at estimating the flexible joint state, namely position, velocity, and torque, only
considering the measured contact force and the actuated joint state. We validate the
overall approach on a simulated version of the humanoid robot TALOS, since its hip
flexibility has a significant impact when performing a locomotion task [Villa et al.,
2022]. To address the elasticity of the robot link, the authors of [Villa et al., 2022]
locally compensate the effect of deflections by modifying the measured position and
velocity of some actuated joints considered in the whole-body controller. By extending
the robot state with passive joints, our approach automatically considers the link
flexibility in the control stabilization problem.

Whole-Body Control of Humanoid Robots with Link Flexibility 148

To further test the proposed strategy, we compare the whole-body control presented
in this chapter with the approach discussed in Section 7.2. In this respect, we investigate
the flexibility of the link that makes classical approaches fail. Finally, we analyze the
performance of the presented control design with respect to different values of the
stiffness parameter.

The chapter is organized as follows. Section 9.1 details the model used to characterize
the flexibility of the link and extends the humanoid robot model to account for it.
Section 9.2 discusses the whole-body controller. Section 9.3 contains the design of an
observer to estimate the flexible joint state online. Section 9.4 presents the simulation
results on the TALOS humanoid robot. Finally, Section 9.5 concludes the chapter.
The content of this chapter has been carried out during my Ph.D. secondment in the
Gepetto laboratory of the LAAS-CNRS Laboratory for Analysis and Architecture of
Systems in Toulouse, France. The control architecture presented in this chapter is the
subject of a publication to be submitted:

Romualdi, G., Villa, N., Dafarra, S., Pucci, D., and Stasse, O. (2022b).
Control and Estimation of Link Flexibility for Humanoid Robot Motion
Control. IEEE-RAS International Conference on Humanoid Robots
(Humanoids) (Submitted)

9.1 System modeling

TALOS’s hip flexibility has a significant impact on its leg control and, as a result,
its balance and locomotion [Ramuzat et al., 2021]. In this section, we model the
TALOS’s hip flexibility by means of underactuated joints. The section also extends
the humanoid robot model dynamics presented in Section 3.3 to consider the robot’s
link visco-elasticity.

9.1.1 Model of the hip flexibility

Following the work of Villa et al. [2022], we model the flexibility by introducing two
passive virtual joints between the base link and each leg. The virtual joints simulate
the motion caused by the visco-elastic deformation of the waist-leg connection, where
the link cross section is reduced. Given the i-th passive joint, we assume that it exerts

Whole-Body Control of Humanoid Robots with Link Flexibility 149

a torque τ f
i that depends on the joint deflection sf

i and its velocity ṡf
i [Nakaoka et al.,

2007] as
τ f

i = −kis
f
i − diṡ

f
i . (9.1.1)

where ki and di are, respectively, the stiffness and damping coefficients of the flexible
joint i. By assuming to model the link flexibility with nf joints, we can consider the
robot to have n joints where n = na + nf with na are the actuated joints.

In the specific case of the TALOS robot, the authors of [Villa et al., 2022] notice
that the stiffness is due to the vertical linkage and, consequently, they model the
flexibility along the pitch and roll axis, only. In this chapter, the same consideration
holds, so we introduce two passive flexible joints for each leg. As a result nf = 4 while
na = 32 – see Section 1.2.

Assuming that it is possible to estimate τ f
i , we approximate the flexible joint state

by discretizing Equation (9.1.1), resulting in

sf
i [k] = dis

f
i [k − 1]− τ f

i [k] d t
ki d t+ di

, (9.1.2a)

ṡf
i [k] = sf

i [k]− sf
i [k − 1]

d t . (9.1.2b)

Here d t is the sampling time. sf
i [k] = sf

i (t0 + k d t) and ṡf
i [k] = ṡf

i (t0 + k d t).

9.1.2 Modeling of a floating base system with flexible joints

This section extends the floating base system model presented in Section 3.3 to consider
underactuated flexible joints.

Let us consider an inertial frame I and a floating base system making nc contact
with the environment. We recall:

• B = (pB, [B]) is the frame rigidly attached to the robot base. IHB ∈ SE(3)
describes the position and orientation of B with respect to the inertial frame I.

• Hereafter the base velocity expressed in mixed representation B[I]vI,B such that
B[I]v⊤

I,B =
[

I ṗ⊤
B

B[I]ω̇⊤
I,B.

]
• The actuated and flexible joint positions are indicated, respectively, with sa ∈ Rna

and sf ∈ Rnf ;

• the actuated and flexible joint torques are indicated, respectively, with τa ∈ Rna

and τ f ∈ Rnf .

Whole-Body Control of Humanoid Robots with Link Flexibility 150

We extend the robot configuration (3.2.8) by introducing the flexible joint value as
q = (IpB,

IRB, s
a, sf). q is an element of a Lie group Q = R3 × SO(3) × Rna × Rnf .

The associated lie Algebra writes as q = R3 × so(3)× Rna × Rnf . Here, we recall that
q is isomorphic to R3 × R3 × Rna × Rnf – see Appendix A.3.

The velocity of the multi-body system belongs to q and we denote it with ν =(
I ṗB,

B[I]ωI,B, ṡ
a, ṡf

)
.

Slightly modifying (3.3.3), we write the dynamics of a floating base system with
flexible joints as follows

M(q)ν̇ + h(q, ν) =

06×na

Ina

0nf ×na

 τa +

06×nf

0na×nf

Inf

 τ f + JC(q)⊤f, (9.1.3)

where

JC(q) =

JC1(q)

...
JCnc

(q)

 , f =

C1[I]f1

...
Cnc [I]fnc

 . (9.1.4)

Recalling that n = na + nf , M ∈ R(n+6)×(n+6) is the mass matrix, h ∈ R(n+6) accounts
for Coriolis, the centrifugal effects and the gravity term. Ck[I]fk ∈ R6 denotes the
k-th external wrench applied by the environment on the robot expressed in mixed
representation. The Jacobian JCk

is the mixed velocity Jacobian of the contact Ck.
Following the same approach presented in Section 3.3, the dynamics (9.1.3) is

expressed by separating the first 6 rows, which refers to the underactuated floating
base, from the last rows na + nf , which refers to the actuated and flexible joints as:

Mν(q)ν̇ + hν(q, ν) = J⊤
Cν

(q) f, (9.1.5a)

Ms(q)ν̇ + hs(q, ν) =
 Ina

0nf ×na

 τa +
0na×nf

Inf

 τ f + J⊤
Cs

(q) f. (9.1.5b)

The subscript ν refers to the first 6 rows of the matrix, while s refers to the last n rows.
Equation (9.1.5) is often denoted as the base projection of the floating base dynamics,
while Equation (9.1.6) is the joint space projection.

Whole-Body Control of Humanoid Robots with Link Flexibility 151

9.2 Whole-body Controller

Similar to what is discussed in Sections 7.2 and 8.2, the goal of the whole-body
controller is to guarantee the tracking of desired kinematic quantities while ensuring
the feasibility of the contact forces. In this section, we present an extension of the
dynamics-based whole-body controller of Section 7.2 that considers the floating base
dynamics in the case of under-actuated flexible joints – Equation (9.1.3).

The proposed controller computes the desired robot actuated joint torques τa, the
generalized acceleration B[I]ν̇, and a set of desired spatial contact forces expressed
in mixed representation Cj [I]fj. Following the same approach as in Section 7.2, we
formulate the control problem using the stack of tasks approach. We transcribe the
optimal control problem into a constrained optimization problem. Here, we consider
the low priority tasks as the terms of the cost function, while the high priority tasks
are modeled as constraints.

9.2.1 Low and high priority tasks

This section introduces the list of low and high priority tasks considered in the optimal
control problem.

Centroidal momentum task

Given a frame Ḡ = (xCoM, [I]), we introduce the centroidal momentum task as in
Section 7.2.1:

Ψh = Ḡḣ
∗ − Acf −mḡ. (9.2.1)

where m is the robot mass, ḡ =
[
0 0 −g 0 0 0

]⊤
is the 6D gravity acceleration.

Ac is the matrix containing the co-adjoint transformations ḠX
Ci[I], i.e.

Ac =
[

ḠX
C1[I] . . . ḠX

Cnc [I].
]

(9.2.2)

Ḡḣ
∗ is chosen considering (7.2.4) and (7.2.5) as:

Ḡḣ
∗ =

mẍref
CoM

Ḡḣ
ωref

+
mKd

CoM 03×3

03×3 Khω

ẋref
CoM − ẋCoM

Ḡh
ωref − Ḡh

ω

+
mKp

CoM

03×3

 (xref
CoM − xCoM

)
.

(9.2.3)
In our scenario, the desired centroidal quantities xref

CoM and Ḡh
ω are provided by a

high-level planner.

Whole-Body Control of Humanoid Robots with Link Flexibility 152

Cartesian task

Similar to what was discussed in Section 7.2.1, the Cartesian task is implemented as:

ΨLSE(3) = L[I]v̇∗
I,L − JLν̇ − J̇Lν (9.2.4)

where L[I]v̇∗
I,L =

[
p̈∗⊤

L
Iω̇∗⊤

I,L

]⊤
is chosen as (7.2.11). Similarly, we recall that the

positional and rotational tasks are given by Equations (7.2.12) and (7.2.13). As we
discuss in more depth in Section 9.2.2, we apply this task to stabilize the orientation
of the chest and the root and the pose of the feet.

Floating base dynamics task

If the robot is equipped with under-actuated flexible joints, the whole-body controller
should consider the measured (or estimated) joint torques acting on the flexibility. To
do so, we modify the floating base dynamics task presented in Section 7.2.1. We project
the dynamics (9.1.3) into the base and joint subspaces, and we name the projection
as base dynamics and joint dynamics – see Section 3.3. We define the base dynamics
constraint as (7.2.14)

Ψdynν
= hν +Mν ν̇ − J⊤

Cν
f. (9.2.5)

Equation (9.2.5) does not depend on the flexible joint state. The joint dynamics task
is given by

Ψdyns
= hs +Ms(q)ν̇ −

 Ina

0nf ×na

 τa −

0na×nf

Inf

 τ f − J⊤
Cs

f. (9.2.6)

The subscript ν refers to the first six rows of the matrix, while s refers to the last
na + nf rows. We notice that the last nf rows of (9.2.6) represent the underactuated
dynamics due to joint flexibility.

Joint position regularization task

To prevent the controller from computing solutions that generate a huge variation in
joint acceleration, we introduce a joint regularization task for both the actuated and

Whole-Body Control of Humanoid Robots with Link Flexibility 153

flexible joints, as

Ψsa = s̈∗
a −

[
0na×6 Ina 0na×nf

]
ν̇ (9.2.7a)

Ψsf
= s̈∗

f −
[
0nf ×6 0nf ×na Inf

]
ν̇, (9.2.7b)

with s̈∗
a is equal to

s̈∗
a = s̈ref

a + kd
sa

(ṡref
a − ṡa) + kp

sa
(sref

a − sa). (9.2.8)

where sref
a is the desired joint trajectory provided by a high-level planner. kd

sa
and

kp
sa

are two positive-defined diagonal matrices. On the other hand, assuming that we
estimate the state of the flexible joints, we ask for s̈∗

f equal to

s̈∗
f = −kd

sf
ṡf − kp

sf
sf . (9.2.9)

where kd
sf

and kp
sf

are two defined positive diagonal matrices. Thanks to (9.2.9) the
controller tries to stabilize the flexible joint position to zero.

Joint torque regularization task

In order to prevent the controller from providing solutions with large actuated joint
torques, we introduce the following task:

Ψτ = τ ref
a − τa, (9.2.10)

where, in our case, τ ref
a is provided by a high-level planner.

Feasibile contact force task

The feasibility of the contact wrench Cj [I]fj is guaranteed by the set of inequalities
introduced in Equation (7.2.26):

Φfj : ACj [I] Cj [I]fj − b ⪯ 0. (9.2.11)

we recall that ACj [I] depends on the robot generalized state q ∈ Q.

Whole-Body Control of Humanoid Robots with Link Flexibility 154

9.2.2 Quadratic programming problem

Following the same approach as in Section 7.2.2, we achieve the control objective by
transcribing the control problem as a constrained quadratic programming problem.
Here, we consider the contact forces Cj [I]fj , the base acceleration B[I]v̇I,B, the actuated
joint acceleration s̈a, and the actuated joint torques τa as conditional variables.

The tracking of the left and right feet are considered high-priority SE(3) tasks (9.2.4)
and they are denoted respectively as ΨLSE(3) and ΨRSE(3) . We take into account the
centroidal momentum tracking as a high priority task (9.2.1). The desired centroidal
quantities xref

CoM and href
ω in (9.2.3) are provided by a high-level planner that assumes

that all robot joints are fully actuated. We also consider the base (9.2.5) and joints
dynamics (9.2.6) as high priority tasks. To prevent the controller from asking for a high
motion of the upper body while stabilizing the CoM, we introduce two SO(3) tasks,
one associated with the chest and the other with the waist orientations, respectively,
denoted ΨTSO(3) and ΨRSO(3) . In both cases, we ask to keep the z coordinates of the
link frames parallel to the gravity vector g. The postural conditions of the actuated
and flexible joints (9.2.7) are considered low priority tasks. We regularize the desired
actuated joint torques as a low priority task Ψτ (9.2.10). Here τ ref

a is provided by a
high-level planner. Finally, to guarantee feasible contact forces for the feet, we add the
task (9.2.11), denoted respectively as ΦfL and ΦfR .

The above hierarchical control objectives can be cast into an optimization problem
described by the following formulation:

minimize
B[I]vI,B , s̈a, τa, f

Ψ⊤
TSO(3)

ΛT ΨTSO(3) + Ψ⊤
RSO(3)

ΛRΨRSO(3) (9.2.12a)

+ Ψ⊤
s ΛsΨs + Ψ⊤

τ Λτ Ψτ (9.2.12b)
subj. to ΨLSE(3) = 0 (9.2.12c)

ΨRSE(3) = 0 (9.2.12d)
Ψh = 0 (9.2.12e)
Ψdynν

= 0 (9.2.12f)
Ψdyns

= 0 (9.2.12g)
ΦfL (9.2.12h)
ΦfR (9.2.12i)

Whole-Body Control of Humanoid Robots with Link Flexibility 155

La
0 Lf

1

sf
1 sf

2

Lf
2 La

1 La
2 La

3 La
4 La

5 La
6

sa
1 sa

2 sa
3 sa

4 sa
5 sa

6

Figure 9.1 Schematic representation of the flexible TALOS leg. The links are repre-
sented by the graphs node, while the joints are the arcs. La

0 is the robot waist, Lf
1 and

Lf
2 the flexible links, La

i and sa
i with 1 ≤ i ≤ 6 are respectively the robot link and the

actuated joints

Following the same considerations as in Sections 7.2.2 and 8.2.2, we transcribe the
optimization problem (9.2.12) into a quadratic programming problem (Section 5.4)
and we solve it via an off-the-shelf solver.

9.3 Flexible Joint State Observer

The optimal control problem presented in Section 9.2 assumes the knowledge of the
state of the flexible joints, namely position, velocity, and torque. In a simulated
environment, these values are perfectly known. However, in the real scenario, an
estimation algorithm is required to compute them.

In this section, we discuss an algorithm that estimates the flexible joint torques,
position, and velocity considering the measured contact wrenches that act on the robot
soles and the actuated joint state. For simplicity, we present the algorithm considering
the flexibility of the TALOS link. Given the symmetry of the robot structure, we
analyze the approach only for one leg. Even if we approach the problem considering
the TALOS use case, we want to underline that the proposed estimation can also be
applied to other humanoid robots affected by link flexibility.

For TALOS, we know that each leg is made up of 8 joints, 2 of which are flexible and
the other 6 are actuated. Furthermore, we assume that the flexible joints are located
near the waist. As discussed in Section 3.1, we model the floating base multi-body
system as a kinematic three. Figure 9.1 presents a schematic representation of the
TALOS leg structure. Exploring the three from the waist to the sole, we first visit the
flexible joints, and then the actuated joints. From now on, we denote by La

0 the waist
of the robot, while Lf

1 and Lf
2 are the fictitious flexible links required to connect the

flexible joints sf
1 and sf

2 . La
i and sa

i with 1 ≤ i ≤ 6 are the robot link and the actuated
joints, respectively. Figure 9.2 presents the geometric model of the flexible robot leg.
Each link is associated with a frame attached to the joint connecting the link to its

Whole-Body Control of Humanoid Robots with Link Flexibility 156

La
6

La
5

La
4

La
3

La
2

La
1

Lf
2

Lf
1

Lf
1HLf

2
Lf

2HLa
1

La
1HLa

2

La
2HLa

3

La
3HLa

4

La
4HLa

5

La
5HLa

6

La
0

Parent to child direction

Figure 9.2 Geometric model of the flexible TALOS leg. Each link is associated with
a frame attached to the joint connecting the link to its parent. The red frames are
associated with the flexible links while the green frames to the robot links.

parent. The name of the frame associated with the link coincides with the name of the
link.

Given one link of the leg chain, the associated rigid body dynamics is given by
Eurel-Poincaré Equations (Equation (2.3.5)):

LML
Lv̇I,L + LvI,L ×∗

LML
LvI,L = LML

IR⊤
Lg

03×1

+
nf∑

k=1
Lfk. (9.3.1)

where L is the frame associated with the link. LML is the 6D constant inertial matrix
of the link (2.3.1). LvI,L is the left-trivialized spatial velocity (2.2.12). g is the gravity
vector. Lfk is a 6D spatial force acting on the link, and nf are the forces acting on the
link. We now assume that each link is subject to only two forces. One is exerted by the
parent link, and the other is exerted by the child link. Given the chain structure of the

Whole-Body Control of Humanoid Robots with Link Flexibility 157

leg (Figure 9.1), each link has one parent and one child, except for the waist La
0 and

the foot sole La
6. With an abuse of notation, we consider the environment as the child

of the sole. If the foot is in contact with the ground, one of the 6D forces acting on La
6

is caused by the interaction with the environment. Since TALOS has a force-torque
sensor mounted on the ankle, we assume the ground reaction force is measurable.

We now introduce the proper sensor acceleration as [Traversaro, 2017, Section 2.4.4]

αg
I,L := LXL[I]

L[I]v̇I,L −

IR⊤
Lg

03×1

 . (9.3.2)

Where LXL[I] is the adjoint matrix, i.e, LXL[I] = AdLHL[I] – see Equation (2.2.22).
αg

I,L is the acceleration obtained by an inertial measurement unit (IMU) aligned with
L. The linear part is the readout of a linear accelerometer, and the angular part is the
derivative of the output of a gyroscope.

Combining the proper sensor acceleration (9.3.2) with (9.3.1), we rewrite the body
dynamics as

LMLα
g
I,L +

 03×1
LωI,L

×∗
LML

 03×1
LωI,L

 =
nf∑

k=1
Lfk. (9.3.3)

For convenience, we define LϕL

(
αg

I,L,
LωI,L

)
as

LϕL

(
αg

I,L,
LωI,L

)
= LMLα

g
I,L +

 03×1
LωI,L

×∗
LML

 03×1
LωI,L

 . (9.3.4)

We notice that LϕL

(
αg

I,B,
BωI,L

)
depends on the acceleration, velocity, and inertial

parameters of the body. Taking into account (9.3.4) we can finally rewrite the rigid
body dynamics of the body L as

LϕL =
nf∑

k=1
Lfk, (9.3.5)

where, for the sake of clarity, we hide the dependencies LϕL.
Recalling the structure of the leg chain, we denote by La

i
ϕLa

i
the terms associated

with the robot link La
i connected to the parent through the actuated joint sa

i and by

Lf
i
ϕLf

i
the one associated with the fictitious flexible link Lf

i .

Whole-Body Control of Humanoid Robots with Link Flexibility 158

Algorithm 1 Forward kinematics
procedure ForwardKinematics(sa, ṡa, s̈a, La

6ωI,La
6
, αg

I,La
6
)

na ← 6 ▷ Actuated joints
i← na

while i ̸= 0 do
if i = na then

ω[i]← La
6ωI,La

6
α[i]← αg

I,La
6

else
ω[i]← ComputeAngularVelocity(sa

i+1, ṡ
a
i+1,ω[i+ 1]) ▷ Eq. (9.3.6)

α[i]← ComputeAcceleration(sa
i+1, ṡ

a
i+1, s̈

a
i+1,α[i+ 1])

end if
i← i− 1

end while
return ω,α

end procedure

9.3.1 Forward kinematics

Given the angular velocity and the proper sensor acceleration of the foot sole La
6, we

can compute La
i
ϕLa

i
recursively. Indeed, given the link La

i , we compute its body angular
velocity as

La
i ωI,La

i
= La

i RLa
i+1

(sa
i+1)La

i+1ωI,La
i+1

+ La
i ωLa

i+1,La
i

(9.3.6)

where La
i+1ωI,La

i+1
is the angular velocity of the child link. La

i ωLa
i+1,La

i
is the relative

velocity of the link La
i with respect to La

i+1 written in La
i . Since TALOS is equipped by

revolute joints only La
i ωLa

i+1,La
i

depends only on the left-trivialized joint motion subspace
i+1s (Equation (3.2.12)) and on the joint velocity ṡa

i+1. Similarly, we can prove that
the sensor proper acceleration αg

I,La
i

can be computed recursively by considering the
child joint position sa

i+1 velocity ṡa
i+1 and acceleration s̈a

i+1, and the child sensor proper
acceleration αg

I,La
i+1

[Traversaro, 2017, Section 4.4.3].
Algorithm 1 summarizes the procedure required to compute the body angular

velocities and proper accelerations. We notice that given a link, its velocity and
acceleration depend only on the child link state and on the joint that connects the link
to its child.

We want to stress that if an IMU is mounted on the robot sole, the angular velocity
and the proper sensor acceleration of La

6 can be derived from the sensor readouts.
Otherwise, we propose two possible solutions: i) In the case of low swing foot velocity
and acceleration, we suggest considering La

6ωI,La
6

and αg
I,La

6
equal to zero. ii) Assuming

Whole-Body Control of Humanoid Robots with Link Flexibility 159

that an IMU is mounted on the robot waist. We suggest setting the proper acceleration
of the foot αg

I,La
6

and the angular velocity La
6ωI,La

6
at time t equal to the one computed

by the forward kinematics that considers the waist angular velocity BωI,B and the
proper acceleration αg

I,B at time t, the actuated joint position velocity and acceleration
at time t and the estimated flexible joint position velocity and acceleration at t− d t.
With d t the control sampling period. To guarantee the convergence of the algorithm,
the choice of d t becomes crucial. Here, we suggest setting d t small enough to capture
the evolution of the system dynamics.

9.3.2 Inverse dynamics propagation

Assuming that the link proper acceleration αg
I,La

i
and angular velocity La

i ωI,La
i

have
been computed with Algorithm 1. Considering Equation (9.3.5) and assuming that
each link is subject to two 6D forces, we write the rigid body dynamics for the link La

i

as:
La

i
ϕLa

i
= La

i
fλ(La

i),La
i

+ La
i
fLa

i+1,La
i
. (9.3.7)

λ(La
i) gives the parent link of La

i – see Section 3.1. La
i
fλ(La

i),La
i

is the spatial force exerted
by the parent link λ(La

i) to La
i whose coordinates are expressed in La

i . La
i
fLa

i+1,La
i

is the
spatial force exerted by La

i+1 to La
i expressed in La

i . We now reorganize Equation (9.3.7)
to reveal the recursive structure of the algorithm:

La
i
fλ(La

i),La
i

= La
i
ϕLa

i
− La

i
fLa

i+1,La
i

(9.3.8a)
= La

i
ϕLa

i
+ La

i
fLa

i ,La
i+1

(9.3.8b)
= La

i
ϕLa

i
+ La

i
XLa

i+1
La

i+1
fLa

i ,La
i+1

(9.3.8c)

We notice that by projecting (9.3.8) into the joint motion subspace is we obtain the
torque acting on the joint sa

i , that is,

τa
i = is⊤

La
i
fλ(La

i),La
i

(9.3.9)

We recall that TALOS is equipped with joint torque sensors – see Section 1.2. As
a consequence, τa

i can be directly measured. Using this information, we attempt to
improve the estimation of the 6D force La

i
fλ(La

i),La
i

by considering the measured joint

Whole-Body Control of Humanoid Robots with Link Flexibility 160

Algorithm 2 Inverse Dynamics
procedure InverseDynamics(sa, β, τameas

,α,ω)
na ← 6
i← na

while i ̸= 0 do
La

i
ϕLa

i
←ComputePhi(ω[i], α[i], La

i
MLa

i
)

if i = na then
La

i+1
fLa

i ,La
i+1
← GetSoleExternalWrench()

else
La

i+1
fLa

i ,La
i+1
← f [i+ 1]

end if
τ ← τameas

i
is← GetMotionSubspace(i)
La

i
XLa

i+1 ← GetCoAdjointMatrix(sa
i)

f [i]← ComputeWrench(β, τ, La
i
ϕLa

i
, is, La

i+1
fLa

i ,La
i+1
, La

i
XLa

i+1) ▷ Eq. (9.3.8)
i← i− 1

end while
return f

end procedure

torque as follows:

La
i
fλ(La

i),La
i

=
[
(1− β)τameas

i + β is⊤
(

La
i
ϕLa

i
+ La

i
XLa

i+1
La

i+1
fLa

i ,La
i+1

)]
is (9.3.10a)

+
(
I6 − is is⊤

) (
La

i
ϕLa

i
+ La

i
XLa

i+1
La

i+1
fLa

i ,La
i+1

)
. (9.3.10b)

Here, β ∈ [0, 1] is a tunable parameter. To give the reader a better understanding, we
notice that whether β = 0 the torque component parallel to the vector motion subspace
is replaced by the readouts of the joint torque sensor. If β = 1 the joint torque sensor
is not considered.

Algorithm 2 summarizes the procedure to compute the wrench acting on an actuated
joint. We notice that given a joint sa

i , the wrench acting on it depends only on the
state of the child link.

9.3.3 Flexible joint state estimation

Applying the Algorithms 1 and 2 we can recursively compute the wrench acting on
the joint sa

1. Assuming a neglected mass and inertia for the flexible link Lf
2 , i.e.,

Whole-Body Control of Humanoid Robots with Link Flexibility 161

Whole-body
QP Controller

Simulator

Forward dynamics (3.3.1)
Joint flexibility (9.1.1)

∫
ν, ν̇

q, ν

Flexible Joint State
Observer

Gh
ref,G ḣ

ref

τ ∗

IRref
R ,I Rref

T

IHref
F ,F [I] vref

I,F ,
F [I] v̇ref

I,F

τ ref
a , sref

a

F [I]f

sf , ṡf , τf

τa, saIHB,
B[I]vI,B, sa, ṡa

F [I]vI,F ,
F [I] v̇I,F

Figure 9.3 Flexible joint controller architecture.

Lf
2
MLf

2
= 06×6, we can write the flexible link dynamics as

Lf
2
fLf

1 ,Lf
2

= −Lf
2
fLa

1 ,Lf
2

(9.3.11a)
= Lf

2
fLf

2 ,La
1

(9.3.11b)
= Lf

2
XLa

1
La

1
fLf

2 ,La
1

(9.3.11c)

We notice that Lf
2
XLa

1 depends on the position of the joint sa
1.

Given (9.3.11), we can compute the flexible joint torque τ f
2 by projecting Lf

2
fLf

1 ,Lf
2

onto the vector motion subspace

τ f
2 =

(
Lf

2
fLf

1 ,Lf
2

)⊤ 2sf (9.3.12)

Combining (9.3.12) with the discretized flexible joint position (9.1.2a) we estimate
the flexible joint position sf

2 . Applying the very same approach, we can estimate the
flexible joint torque τ f

1 and the position sf
1 .

At each time step, applying Algorithms 1, 2 and Equations (9.3.11) and (9.3.12),
we estimate the flexible joint state. The result is finally considered by the whole-
body controller to compute the desired actuated joint torques. Figure 9.3 shows the
connection between the whole-body controller, the flexible joint state estimator, and
the simulator.

Whole-Body Control of Humanoid Robots with Link Flexibility 162

Figure 9.4 A simulation of the TALOS robot walks with the TSID-Flex controller

9.4 Results

In this section, we present the simulation tests of the control strategy presented in
Section 9.2 – Figure 9.4. The proposed control strategy is compared with a whole-body
controller that assumes all the robot joints actuated – see Section 7.2. From now on,
the control approach presented in this chapter is called TSID-Flex while the controller
introduced in Section 7.2 TSID-Rigid. The experiments are carried out on a simulated
version of the TALOS humanoid robot – see Section 1.2. The architecture takes (on
average) less than 1 ms to evaluate its output. The OSQP [Stellato et al., 2018a] library
is used to solve the optimization problems. The code is fully implemented in Python 1.
The simulations are obtained by integrating the forward dynamics (FD) of the robot
obtained from (3.3.1). Figure 9.5 shows a zoom in on the flexible joints. To simply
visualize the link deformation, we introduced two disks with zero masses and zero
inertial at the level of the flexibility. When the two disks on the same leg coincide, the
positions of the flexible joints are equal to zero.

To validate the performance of the proposed architecture, we present two main
experiments. First, we compare the performance of the TSID-Flex and the TSID-Rigid
controllers in the case of different stiffness parameters k. Second, we analyze the

1The control objective is implemented exploiting the Python bindings provided by the bipedal-
locomotion-framework library: https://github.com/ami-iit/bipedal-locomotion-framework/
tree/v0.6.0/bindings

https://github.com/ami-iit/bipedal-locomotion-framework/tree/v0.6.0/bindings
https://github.com/ami-iit/bipedal-locomotion-framework/tree/v0.6.0/bindings

Whole-Body Control of Humanoid Robots with Link Flexibility 163

Figure 9.5 Zoom of the flexible joints motion.

performance of the TSID-Flex in the case of different stiffness. In both scenarios, the
desired robot CoM, footsteps, and actuated joint trajectories are computed offline 2.
The robot walks 1 meter forward with a step length of 20 cm, starting with the right
foot. The first and last steps are 10 cm long. The double support lasts 0.2 s, while the
single support lasts 1.2 s.

9.4.1 Comparison between TSID-Flex and TSID-Rigid

In Table 9.1, we summarize the results of the control strategies for different stiffness
parameters k. The labels success and failure mean that the associated controller is
either able or not to ensure the robot’s balance while walking. In all the experiments
presented in this section, the damping parameter is arbitrarily set to b = 2

√
k.

To compare the two controllers, we decided to perform two main experiments. In
the former, we choose a set of flexible parameters such that both whole-body controllers
guarantee the balance while walking. In the latter, we decrease the value of the stiffness
parameter. Namely:

- Experiment 1 k = 1× 104 N rad−1;

Table 9.1 Controller implementation outcome in the case of different joint stiffness
parameter k. The damping parameter is set to b = 2

√
k.

Whole-Body Control 10 kN rad−1 5 kN rad−1 3 kN rad−1 2 kN rad−1 1 kN rad−1

TSID-Rigid success success failure failure failure
TSID-Flex success success success success success

2The whole-body trajectory are provided by: https://github.com/loco-3d/multicontact-
api/tree/v2.1.0

https://github.com/loco-3d/multicontact-api/tree/v2.1.0
https://github.com/loco-3d/multicontact-api/tree/v2.1.0

Whole-Body Control of Humanoid Robots with Link Flexibility 164

k = 1× 104 N rad−1

0 5 10 15 20 25 30 35
time (s)

-3

-2

-1

0

1

e x
C
oM

(m
)

#10 -3

TSID-Rigid TSID-Flex

(a) CoM - x

0 5 10 15 20 25 30 35
time (s)

-0.015

-0.01

-0.005

0

0.005

0.01

e y
C
o
M

(m
)

TSID-Rigid TSID-Flex

(b) CoM - y

0 5 10 15 20 25 30 35
time (s)

-1.5

-1

-0.5

0

0.5

1

e z
C
oM

(m
)

#10 -3

TSID-Rigid TSID-Flex

(c) CoM - z

Figure 9.6 CoM tracking: comparison between TSID-Rigid and TSID-Flex.

- Experiment 2 k = 3× 103 N rad−1.

Experiment 1

Figure 9.6 shows the CoM tracking performance obtained with TSID-Flex and TSID-
Rigid in terms of tracking error. The TSID-Flex controller seems to show good tracking
performance and the CoM error is kept below 2 mm. On the other hand, the TSID-
Rigid induces a higher error on the CoM tracking. Similar considerations hold also for
the tracking of the centroidal angular momentum.

Figure 9.7 presents the tracking of the angular momentum. The TSID-Flex ensures
a smaller angular momentum error with respect to the TSID-Rigid. One reason for
this behavior is that the TSID-Rigid assumes full control of all the robot joints. This
assumption is generally valid in the case of stiff k, but it does not hold if k decreases.
Figure 9.8 presents the left foot trajectory error when the whole-body controller is
TSID-Flex or TSID-Rigid. The angular error is given by the angle of the axis-angle
representation between the foot orientation and the desired orientation [Huynh, 2009].

Whole-Body Control of Humanoid Robots with Link Flexibility 165

k = 1× 104 N rad−1

0 5 10 15 20 25
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

x
(k

g
m

2
/

s)

Desired TSID-Rigid TSID-Flex

(a) Angular Momentum - x

0 5 10 15 20 25
time (s)

-1.5

-1

-0.5

0

0.5

1

y
(k

g
m

2
/

s)

Desired TSID-Rigid TSID-Flex

(b) Angular Momentum - y

0 5 10 15 20 25
time (s)

-0.4

-0.2

0

0.2

0.4

z
(k

g
m

2
/

s)

Desired TSID-Rigid TSID-Flex

(c) Angular Momentum - z

Figure 9.7 Angular momentum tracking: comparison between TSID-Rigid and TSID-
Flex.

k = 1× 104 N rad−1

0 5 10 15 20 25 30 35
time (s)

-5

0

5

10

z
(m

)

#10 -4

TSID-Rigid TSID-Flex

(a) Foot tracking position error - z

0 5 10 15 20 25 30 35
time (s)

-0.1

0

0.1

0.2

0.3

0.4

an
gl

e
(d

eg
)

TSID-Rigid TSID-Flex

(b) Foot tracking angular error

Figure 9.8 Foot tracking: comparison between TSID-Rigid and TSID-Flex.

Since TSID-Rigid does not consider flexible joint deformation, the controller assumes a
wrong foot orientation when the robot is on single support – for 2.5 s ≤ t ≤ 5.5 s in
Figure 9.8.

Whole-Body Control of Humanoid Robots with Link Flexibility 166

k = 3× 103 N rad−1

0 5 10 15 20 25 30 35
time (s)

-10

-8

-6

-4

-2

0

e x
C
oM

(m
)

#10 -3

TSID-Rigid TSID-Flex

(a) CoM - x

0 5 10 15 20 25 30 35
time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

e y
C
o
M

(m
)

TSID-Rigid TSID-Flex

(b) CoM - y

0 5 10 15 20 25 30 35
time (s)

-2

-1

0

1

e z
C
oM

(m
)

#10 -3

TSID-Rigid TSID-Flex

(c) CoM - z

Figure 9.9 CoM tracking: comparison between TSID-Rigid and TSID-Flex.

Experiment 2

The centroidal quantity tracking issue discussed in Experiment 1 worsens at lower
values of the stiffness parameter k. Figure 9.9 shows the CoM tracking performances of
the two controllers. In Figure 9.10 we present the tracking of the angular momentum.
The TSID-Flex is still capable of ensuring good performance. On the other hand, the
TSID-Rigid does not consider the flexible joint state. As a consequence, this leads to a
non-negligible error on the robot CoM. In order to keep the balance, the TSID-Rigid
controller requires high variations of the robot’s foot orientation – see Figure 9.11. At
t ≈ 10 s the robot falls.

9.4.2 Performances of the TSID-Flex in the case of different
stiffness parameters

In this section, we benchmark the performance of the TSID-Flex controller in the
case of different stiffness parameter k, namely k = 10 kN rad−1, 5 kN rad−1, 3 kN rad−1,

Whole-Body Control of Humanoid Robots with Link Flexibility 167

k = 3× 103 N rad−1

0 5 10 15 20 25
time (s)

-2

-1

0

1

2

x
(k

g
m

2
/

s)

Desired TSID-Rigid TSID-Flex

(a) Angular Momentum - x

0 5 10 15 20 25
time (s)

-1.5

-1

-0.5

0

0.5

1

y
(k

g
m

2
/

s)

Desired TSID-Rigid TSID-Flex

(b) Angular Momentum - y

0 5 10 15 20 25
time (s)

-0.5

0

0.5

z
(k

g
m

2
/

s)

Desired TSID-Rigid TSID-Flex

(c) Angular Momentum - z

Figure 9.10 Angular momentum tracking: comparison between TSID-Rigid and
TSID-Flex.

k = 3× 103 N rad−1

0 5 10 15 20 25 30 35
time (s)

0

2

4

6

z
(m

)

#10 -3

TSID-Rigid TSID-Flex

(a) Foot tracking position error - z

0 5 10 15 20 25 30 35
time (s)

-0.5

0

0.5

1

1.5

2

an
gl

e
(d

eg
)

TSID-Rigid TSID-Flex

(b) Foot tracking angular error

Figure 9.11 Foot tracking: comparison between TSID-Rigid and TSID-Flex.

Whole-Body Control of Humanoid Robots with Link Flexibility 168

TSID-Flex performances in the case of different k

0 5 10 15 20 25 30 35
time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
e x

C
oM

(m
)

#10 -3

k = 10 k N/rad k = 5 k N/rad k = 3 k N/rad k = 2 k N/rad k = 1 k N/rad k = 0:5 k N/rad

(a) CoM x error.

0 5 10 15 20 25 30 35
time (s)

-3

-2

-1

0

1

2

3

e y
C
oM

(m
)

#10 -3

k = 10 k N/rad k = 5 k N/rad k = 3 k N/rad k = 2 k N/rad k = 1 k N/rad k = 0:5 k N/rad

(b) CoM y error.

Figure 9.12 CoM Tracking.

2 kN rad−1, 1 kN rad−1, and 0.5 kN rad−1. In all experiments presented in this section,
the damping parameter is arbitrarily set to b = 2

√
k.

Figure 9.12 shows the CoM tracking error for different values of k. The controller
induces an acceptable performance for all values of k, i.e., the error is always below
3 mm. However, the lower the stiffness, the higher the tracking error. This increase
in tracking error is caused by the flexible joint state estimation error. Figure 9.13
presents the estimation error of a flexible joint. Similar considerations hold also for
the other three joints. When the robot switches from single support to double support,
the estimated torque associated with the flexible joint has a spike – at t ≈ 8.5 s, 11 s
and 13.5 s in Figure 9.13a. As a consequence, the error propagates in the estimation of
the flexible joint position and velocity – see Figures 9.13b and 9.13c. This behavior is

Whole-Body Control of Humanoid Robots with Link Flexibility 169

Flexible joint observer

8 9 10 11 12 13 14 15
time (s)

-30

-20

-10

0

10

20

30

e =
f 1

(N
m

)
k = 10 k N/rad k = 5 k N/rad k = 3 k N/rad k = 2 k N/rad k = 1 k N/rad k = 0:5 k N/rad

(a) Flexible joint torque error.

8 9 10 11 12 13 14 15
time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

e s
f 1

(d
eg

)

k = 10 k N/rad k = 5 k N/rad k = 3 k N/rad k = 2 k N/rad k = 1 k N/rad k = 0:5 k N/rad

(b) Flexible joint position error.

8 9 10 11 12 13 14 15
time (s)

-20

-15

-10

-5

0

5

10

15

20

25

e
_sf 1

(d
eg

/s
)

k = 10 k N/rad k = 5 k N/rad k = 3 k N/rad k = 2 k N/rad k = 1 k N/rad k = 0:5 k N/rad

(c) Flexible joint velocity error.

Figure 9.13 Flexible joint state estimation error.

Whole-Body Control of Humanoid Robots with Link Flexibility 170

caused by the discontinuity of the contact force. To mitigate this effect, we may try to
perform a smother transition from single to double support and vice versa. The lower
the stiffness parameter k, the higher the estimation error.

9.5 Conclusions

This chapter presents the design of a whole-body QP control layer for a humanoid robot
affected by link flexibility. We model the flexibility by introducing equivalent passive
joints that simulate the motion caused by the link deformation. We then considered
the passive joints position and velocity as state of the floating base system dynamics.
Thanks to this choice, we develop a whole-body controller that implicitly considers the
joint flexibility in the stabilization problem. The chapter also details the design of an
estimator that aims at computing the flexible joint state in real-time.

The proposed approach is validated in a simulated version of the TALOS humanoid
robot, where its hip flexibility has a significant impact while performing locomotion
tasks. Moreover, the architecture is then compared with a whole-body controller that
considers all links of the robot rigid.

As a future work, we plan to mitigate the discontinuity of the contact forces by
performing a smother transition between contiguous support phases. We also plan to
make a detailed comparison with other state-of-the-art controllers that consider the
flexibility of the robot link [Villa et al., 2022]. In addition, we plan to validate the
architecture on the real robot.

Part III

From Simplified to Reduced
Models Controllers

Chapter 10

Benchmarking of Simplified-Model
Controllers for Locomotion

In Part II, we discussed whole-body controllers that take into account different types of
robots, as well as the interaction between the robot and the environment. Independently
of the choice of the whole-body controller, we assumed a high-level algorithm that
provides the reference for the Cartesian trajectories, e.g., CoM and foot trajectories.
This part presents the design of two high-level controllers that compute the commands
for the whole-body control layer presented in Part II. This chapter, in particular,
defines the three-layer controller architecture illustrated in Figure 6.1 as shown in
Figure 10.1. The whole-body QP control ensures the tracking of the desired CoM
and foot trajectories by considering the complete robot models. A detailed design
of different kinds of whole-body controllers is discussed in Part II. The trajectory
optimization layer is maintained fixed with a unicycle-based planner [Dafarra et al.,
2018] that generates the desired DCM and foot trajectories. The simplified model
controller is responsible for implementing a control law that stabilizes the unstable
DCM dynamics. We approach the stabilization problem by designing two different
controllers: an instantaneous and a predictive one. We compare several combinations
of the control architecture with the kinematics-based whole-body QP control layer
presented in Section 7.1. We carried out the test on the humanoid robot iCub v2.7 –
see Section 1.1.1.

The chapter is organized as follows. Section 10.1 introduces a state-of-the-art imple-
mentation of the footstep planner and the DCM planner implemented in the trajectory
optimization layer. Section 10.2 details the components constituting the simplified
model blocks of the three-layer controller architecture. Section 10.3 presents the

Benchmarking of Simplified-Model Controllers for Locomotion 173

Trajectory
Optimization

Simplified
Controller

Whole-body
Controller

RobotDesired
DCM

Desired CoM
Velocity

Joint positions
velocities

Contact Wrenches
Joint and CoM Position/Velocity

Chapter 7

Figure 10.1 The control architecture is composed of three layers: the trajectory
optimization, the simplified model control, and the whole-body control. The inner layer
is described in Chapter 7.

experimental validation of the proposed approaches and shows an explanatory table
comparing the different simplified control strategies. Finally, Section 10.4 concludes
the chapter.

The content of this chapter appears partially in:

Romualdi, G., Dafarra, S., Hu, Y., and Pucci, D. (2018). A Benchmarking
of DCM Based Architectures for Position and Velocity Controlled Walking
of Humanoid Robots. In 2018 IEEE-RAS 18th International Conference
on Humanoid Robots (Humanoids), pages 1–9. IEEE

Romualdi, G., Dafarra, S., Hu, Y., Ramadoss, P., Chavez, F. J. A.,
Traversaro, S., and Pucci, D. (2020). A Benchmarking of DCM-Based
Architectures for Position, Velocity and Torque-Controlled Humanoid
Robots. International Journal of Humanoid Robotics, 17(01):1950034

Video https://www.youtube.com/watch?v=FIqwAO71Fc4
GitHub robotology/walking-controllers

10.1 Background

In several applications, we can assume flat terrain. In this scenario, a human, while
walking, tends to keep the orientation of the body tangential to the path [Flavigne
et al., 2010; Mombaur et al., 2010; Truong et al., 2010] to maximize the energy

https://www.youtube.com/watch?v=FIqwAO71Fc4
https://github.com/robotology/walking-controllers

Benchmarking of Simplified-Model Controllers for Locomotion 174

θ

oB

I

F

UxF

xF

F ∗

x∗
F

x̃F

Figure 10.2 Unicycle model.

efficiency [Handford and Srinivasan, 2014]. This consideration suggests designing a
simple unicycle model to generate the desired footsteps locations and timings [Cognetti
et al., 2016; Dafarra et al., 2018; Faragasso et al., 2013]. Authors of [Faragasso et al.,
2013] considers the unicycle model to plan footsteps in a corridor with turns and
junctions using cameras. While Cognetti et al. [2016] exploits the unicycle model
to perform evasive robot maneuvers. However, in both cases, the footstep planners
consider a constant velocity and a constant footsteps length. Attempts have been made
to consider varying the length and velocity of the steps [Dafarra et al., 2018].

10.1.1 The unicycle model

Let us now consider a 2D unicycle – Figure 10.2, and assume that:

• there exists an inertial frame I;

• there exists a frame U rigidly attached to the center of the unicycle, and we
denote by oB the origin of the frame and by [B] its orientation.

Benchmarking of Simplified-Model Controllers for Locomotion 175

The unicycle model is described by the following dynamical system [Pucci et al., 2013]:
ȯB = R(θ)e1v

θ̇ = ζ
(10.1.1)

where v ∈ R is the linear velocity of the robot expressed in the frame B. ζ ∈ R is
the unicycle angular velocity. oB is the position of the unicycle relative to the inertial
frame I. θ is the orientation of the robot.

The control objective is to asymptotically stabilize the point F , a fixed point with
respect to the unicycle, to the desired point F ∗. Thus, we define the error x̃F as

x̃F := xF − x∗
F , (10.1.2)

where xF is given by
xF = oB +R(θ) BxF , (10.1.3)

with UxF being a constant vector. The control objective becomes the asymptotic
stabilization of x̃F to zero. By time-differentiating Equation (10.1.3), we obtain the
following dynamical system

ẋF = ȯB + ζR(θ)H BxF . (10.1.4)

where H is

H =
0 −1
1 0

 .
By substituting Equation (10.1.1) into (10.1.4), we can rewrite the output dynamics as

ẋF = B(θ)u =
[
R(θ)e1 R(θ)H UxF

]
u = R(θ)

1 − UxFy

0 UxFx

u. (10.1.5)

Here, u is the vector containing the controlled input v and ζ, i.e., u =
[
v ζ

]⊤
. It can

be seen that det (B(θ)) = BxFx , consequently, when the control point F is not located
on the axis of the wheels, its stabilization to an arbitrary reference trajectory F ∗ can
be achieved by using a simple feedback linearization law of the form

u = B(θ)−1(ẋ∗
F −K(xF − x∗

F)), (10.1.6)

Benchmarking of Simplified-Model Controllers for Locomotion 176

Figure 10.3 Footsteps planning from the unicycle trajectory.

with K a positive definite matrix, that is, K ≻ 0.

10.1.2 Footsteps trajectory planner

To obtain the footsteps positions, the trajectory of the left foot and the right foot,
represented by the wheels of the unicycle, are sampled using a sampling time dT as
in [Dafarra et al., 2018]

oLk
= oUk

+R(θk) UoL, oRk
= oUk

+R(θk) UoR, (10.1.7)

where L and R are, respectively, the frames attached to the left and right foot.
The subscript k denotes the time instant, i.e., t = k dT .

Given the set of unicycle position (which is finite, thanks to discretization), we can
select a particular position for the feet. Each position in the set is associated with a
time instant, k. This instant is considered the moment in which the corresponding foot
is expected to touch the ground and is called the impact time, timp. Impact time can
be used as decision variables to also select the position of feet.

Using the impact time, the step duration can be defined:

∆t = |tlfimp − t
rf
imp|. (10.1.8)

Another interesting quantity is the distance of the feet during the double support phase

∆x =
∥∥∥Iods

Lk
− Iods

Rk

∥∥∥ . (10.1.9)

Benchmarking of Simplified-Model Controllers for Locomotion 177

Both ∆x and ∆t are used within the cost function in order to reduce the possibility to
obtain long and fast steps

J = Kt
1

∆2
t

+Kx∆2
x, (10.1.10)

where Kt > 0 and Kx > 0 are used to allow the robot to perform long/short and
fast/slow steps.

However, considering only the cost function, too long/short or too fast/slow steps
can be planned. To avoid this undesirable behavior, several constraints are added.
First of all, the bound on the step duration is necessary to avoid too fast or too slow
steps and a division by zero in the cost function:

tmin ≤ ∆t ≤ tmax. (10.1.11)

Also, the distance between the feet during the double support phase has to be bound
in order to avoid undesired collision between feet and, on the other hand, step length
that the robot, according to its mechanical structure cannot achieve:

dmin ≤ ∆x ≤ dmax. (10.1.12)

Last but not least, an additional constraint has to be taken into account: the relative
rotation between the two feet, |∆θ|, has to be lower than θmax, this is necessary to take
into account the mechanical limitations of the humanoid robot.

|∆θ| ≤ θmax. (10.1.13)

Finally, the control objective is achieved by defining the planning problem as a
constrained optimization problem whose conditional variable is timp. In detail, we have:

minimize
timp

Kt
1

∆2
t

+Kx∆2
x (10.1.14a)

subj. to tmin ≤ ∆t ≤ tmax (10.1.14b)
dmin ≤ ∆x ≤ dmax (10.1.14c)
|∆θ| ≤ θmax. (10.1.14d)

Benchmarking of Simplified-Model Controllers for Locomotion 178

ξeos
4 = xZMP5

ξeos
3 = ξios

4

ξeos
2 = ξios

3

ξeos
1 = ξios

2

ξios
1

xZMP4

xZMP3

xZMP2

xZMP1

Figure 10.4 Planning of the DCM trajectory on a flat terrain considering only single
support phases. The ZMP position is assumed constant during the single support
transition. The final position of the DCM coincides with ZMP of the last footstep,
ξeos

4 = xZMP5 .

10.1.3 DCM trajectory generator

We now introduce the trajectory generation problem. Following the work of Englsberger
et al. [2014], we first assume instantaneous transitions between two consecutive single
support phases (SS). Later, we relax this assumption by considering the double support
phases (DS).

Generation of the single support trajectory

Let us consider a set of footsteps locations and timings generated by a proper footsteps
planner, e.g., the unicycle footstep planner in Section 10.1.2. Let us also assume that
the LIPM hypothesis is valid – Section 4.1. Then the DCM dynamics (4.4.7) can be
projected on the contact plane and rewritten as (4.4.14b):

ξ̇ = ζ (ξ − xZMP) (10.1.15)

where, for the sake of clarity, we removed the suffix LIP.
For a constant ZMP, the projected DCM dynamics (4.4.14b) admits a close form

solution of the form:
ξ(t) = xZMP + eζt(ξ0 − xZMP), (10.1.16)

where ξ0 = ξ(0) and the time t has to belong to the step domain t ∈ [0, tstep
i], where

tstep
i is the duration of the i-th step.

Assuming that the final position of the DCM coincides with the ZMP at the last
step, i.e., ξeos

N−1 = xZMPN
, Equation (10.1.16) can be used to find the desired DCM

Benchmarking of Simplified-Model Controllers for Locomotion 179

position at the end of each step as:

ξeos
N−1 = xZMPN

(10.1.17a)
ξeos

i−1 = ξios
i = xZMPi

+ e−ζtstep
i (ξeos

i − xZMPi
), (10.1.17b)

where ξios
i and ξeos

i are respectively the initial and final positions of the desired DCM
for the i-th step .

By substitution of (10.1.17) into (10.1.16), the reference DCM trajectory is calcu-
lated as follows:

ξi(t) = xZMPi
+ eζ(t−tstep

i) (ξeos
i − xZMPi

) . (10.1.18)

The DCM velocity trajectory can be easily evaluated by differentiation of (10.1.18)

ξ̇i(t) = ζeζ(t−tstep
i) (ξeos

i − xZMPi
) . (10.1.19)

By applying, Equation (10.1.17) and (10.1.18) recursively, we compute the DCM
trajectory. Figure 10.4 presents an example of DCM trajectory generation in the case
of five footsteps.

Generation of the double support trajectory

The presented planning method is very powerful and allows one to generate the desired
DCM trajectory in real-time. Nevertheless, it has the limit of taking into account only
single support phases. Indeed, considering only instantaneous transitions between two
consecutive single support phases, the ZMP reference is discontinuous [Englsberger
et al., 2014]. This makes the external forces discontinuous too, and, in turn, also
the desired joint torque may suffer from discontinuity. This can be unfeasible for a
physical robot due to its limited actuator dynamics. These considerations motivate the
development of a new DCM trajectory generator that handles the non-instantaneous
transition between two single support phases [Englsberger et al., 2014].

We notice that by rearranging Equation (10.1.15), the ZMP position depends
linearly on the DCM position and velocity

xZMP = ξ − ζξ̇, (10.1.20)

as a consequence, we can conclude that a DCM reference trajectory with continuous
derivative, i.e., C1 continuity, guarantees a continuous ZMP trajectory. This considera-

Benchmarking of Simplified-Model Controllers for Locomotion 180

tion motivates the use of a third-order polynomial interpolation to smooth the edges
of the DCM reference trajectory evaluated using the exponential technique

ξDS(t) = a3t
3 + a2t

2 + a1t+ a0, (10.1.21)

where the parameters ai must be chosen to satisfy the velocity and position boundary
conditions, namely:

ξiosDS
i = xZMPi−1 + eζ(t

iosDS
i−1 −tstep

i−1)(ξeos
i−1 − xZMPi−1) (10.1.22a)

ξ̇iosDS
i = ζeζ(t

iosDS
i−1 −tstep

i−1)(ξeos
i−1 − xZMPi−1) (10.1.22b)

ξeosDS
i = xZMPi

+ eζ(t
eosDS
i −tstep

i) (ξeos
i − xZMPi

) (10.1.22c)
ξ̇eosDS

i = ζeζ(t
eosDS
i −tstep

i)(ξeos
i − xZMPi

). (10.1.22d)

Equations (10.1.22a) and (10.1.22b) denote, respectively, the desired position and
velocity of DCM at the beginning of the double support phase. On the other hand,
Equations (10.1.22c) and (10.1.22d) represent the desired position and velocity of DCM
at the end of the double support phase. tiosDS

i and teosDS
i are, respectively, the initial

and final time of the i-th double support phase.
By combining the third-order DCM trajectory (10.1.21) with the boundary condi-

tions (10.1.22), we obtain the following:

0 0 0 1
0 0 1 0
T 3

i T 2
i Ti 1

3T 2
i 2Ti 1 0

a⊤

3i

a⊤
2i

a⊤
1i

a⊤
0i

 =

(ξiosDS

i)⊤

(ξ̇iosDS
i)⊤

(ξeosDS
i)⊤

(ξ̇eosDS
i)⊤

 ∀i ∈ {i ∈ N|1 ≤ i ≤ N} . (10.1.23)

Ti is the duration of the i-th double support phase, i.e., Ti = teosDS
i − tiosDS

i . Equation
(10.1.23) is always solvable if and only if the i-th double support duration Ti ̸= 0. The
position and velocity of DCM during the double support phase are finally obtained by
combining the solution of (10.1.23) with (10.1.21).

Figure 10.5 presents an example of DCM trajectory generation considering single
and double support phases. While the robot is in single support, the DCM is generated
by applying the exponential interpolation technique (10.1.18) (orange segment). During
the double support phase (light blue curves), the DCM trajectory is evaluated by
means of the polynomial interpolation method (10.1.21).

Benchmarking of Simplified-Model Controllers for Locomotion 181

ξeosDS
5 = xZMP5

ξeosDS
1

xZMP4

xZMP3

xZMP2

xZMP1

ξiosDS
2 ξeosDS

2

ξiosDS
3

ξeosDS
3

ξiosDS
4 ξeosDS

4

ξiosDS
5

Figure 10.5 Planning of the DCM trajectory on a flat terrain. The SS trajectories,
evaluated using the exponential function (10.1.18), are represented by orange segments.
The DS trajectories, evaluated using the polynomial function (10.1.21), are represented
by light blue curves.

10.2 Simplified model architecture

In this section, we summarize the components constituting the simplified model blocks
of the three-layer controller architecture – Figure 6.1. In detail, we present

• how we consider the first and last steps in the DCM planner,

• the swing foot trajectory planner,

• the simplified model control layer.

These components share a lot of commonalities with other state-of-the-art approaches.
Nevertheless, this section presents how these three components interconnect to define
part of a walking architecture.

10.2.1 The DCM trajectory planner

The DCM trajectory planner used in our architecture inherits from the formulation
presented in Section 10.1.3. However, differently from Englsberger et al. [2014], we
explicitly consider specific boundary conditions for the first and last steps.

For the first double support phase, we ask for an initial DCM position ξiosDS
1 that

coincides with the projection of the measured CoM on the ground surface. In this
particular context, we set the initial boundary conditions of the DCM position (10.1.22a)

Benchmarking of Simplified-Model Controllers for Locomotion 182

ξeosDS
1

xZMP2

xZMP1

ξeosDS
2

ξiosDS
2

ξiosDS
1

(a) DCM trajectory at the first step

ξeosDS
N

ξiosDS
N

(b) DCM trajectory at the last step

Figure 10.6 DCM trajectory planner at the first and last step. The SS trajectory is
represented by the orange segments, while the DS trajectory is represented by the light
blue curves (a) At the first step, the initial DCM position ξiosDS

1 coincides with the
projection of the CoM on the ground surface. (b) At the last step, the final DCM
position ξeosDS

N coincides with the projection of the CoM on the ground surface.

and velocity (10.1.22b) as:

ξiosDS
1 = xLIP (10.2.1a)
ξ̇iosDS

1 = 02×1. (10.2.1b)

Figure 10.6a presents the DCM trajectory generation for the first double support phase.

Similarly, the desired position of the DCM at the end of the double support phase
ξeosDS

N must coincide with the projection of the desired CoM on the ground surface,
denoted by x∗

LIP. This is obtained as the middle point between the two feet. In this
particular case, we set the final boundary conditions for the DCM position (10.1.22c)
and velocity (10.1.22d) as:

ξeosDS
N = x∗

LIP (10.2.2a)
ξ̇eosDS

N = 02×1. (10.2.2b)

In Englsberger et al. [2014], the DCM trajectory for the last single support phase is
calculated by assuming that the final position of the DCM coincides with the local

Benchmarking of Simplified-Model Controllers for Locomotion 183

7 8 9 10 11 12 13

0

0.1

time (s)

D
C

M
y

(m
)

αLS = 0 αLS = 0.2 αLS = 0.5 αLS = 0.7 αLS = 1

Figure 10.7 Final step DCM trajectory w.r.t. αLS. The greater αLS, the higher the
overshoot.

ZMP in the last step – Equation (10.1.17a). In our test, we noticed that this choice
may lead to an undesired overshoot of the DCM projection into the coronal plane 1,
and consequently to an unfeasible DCM trajectory. To mitigate this behavior, we ask
that the final condition of the single support DCM trajectory ξeos

N−1 belongs to the
affine combination (see Section 5.1.1) of the two last footprints, i.e.,

ξeos
N−1 = αLSxZMPN

+ (1− αLS)xZMPN−1 . (10.2.3)

When αLS = 0 the DCM position coincides with the ZMP position of the stance foot.
On the other hand, if αLS = 1 we obtain the same condition proposed by Englsberger
et al. [2014]. In Figure 10.7, we present the DCM trajectory in the last step projected
on frontal plane for different values of αLS. αLS = 1 leads to an undesired overshoot and,
as a consequence, to an unfeasible DCM trajectory. In our experiments, we always set
αLS = 0.2, which in our opinion is a good compromise between a responsive trajectory
while avoiding undesired overshoots. Figure 10.6b presents the generation of the DCM
trajectory for the last double support phase.

1A coronal plane, also known as the frontal plane, is any vertical plane that divides the body into
ventral and dorsal sections.

Benchmarking of Simplified-Model Controllers for Locomotion 184

10.2.2 Swing Foot Trajectory

We now discuss the problem of generating the foot trajectory from the footsteps. More
formally, given two consecutive footsteps poses, hereafter denoted with IHF0 ∈ SE(3)
and IHF1 ∈ SE(3), we aim to find a trajectory that connects these two poses. A common
approach to this problem is to seek a foot trajectory IHF (t) such that its acceleration or
jerk2 is minimized. Since all the whole-body control layer implementations presented in
Part II assume that frame velocity is expressed in mixed representation – Section 2.2.8,
we split the problem of finding an optimal Cartesian trajectory into two subproblems,
namely: evaluating a positional trajectory pF (t) ∈ R3 and a rotation trajectory
IRF (t) ∈ SO(3).

Swing foot position

During the walking gait, the swing foot has to move from the initial position pF (t0) = pF0

to pF (tN) = pFN
to reach a desired maximum height. The instant in which a foot

reaches its maximum altitude is called the apex time, tapex.
We want to find a trajectory pF (t) ∈ R3 such that:

• pF (t0) = pF0 , pF (tN) = pFN
and pF (tapex) = pFapex

• the integral of a suitable Lagrangian function L(t) is minimized, i.e.,

minimize
∫ TN

T0
L(t) d t, (10.2.4)

where L(t) ≥ 0.

Depending on the choice of the objective function, we can design a minimum acceleration
or a minimum jerk trajectory.

Minimum acceleration trajectory If we set the Lagrangian function L(t) as the
squared-norm of the linear acceleration:

L = p̈⊤
F p̈F , (10.2.5)

2We denote with jerk the rate at which an object’s acceleration changes with respect to time

Benchmarking of Simplified-Model Controllers for Locomotion 185

it is possible to show that a trajectory composed by the concatenation of the 3rd order
polynomial functions

si : pF (t) = ai,3t
3 + ai,2t

2 + ai,1t+ ai,0, (10.2.6)

is a minimum acceleration trajectory. Here the coefficients ai,j are chosen to satisfy
the position and velocities boundary conditions for each subtrajectory, The complete
foot position minimum acceleration trajectory is finally computed by attaching the
3rd-order polynomial functions (10.2.6) as

pF (t) =

a0,3t
3 + a0,2t

2 + a0,1t+ a0,0 if t0 ≤ t ≤ tapex

a1,3t
3 + a1,2t

2 + a1,1t+ a1,0 if tapex < t ≤ tN
(10.2.7)

Appendix D.2 presents all the passages required to evaluate a minimum acceleration
trajectory in Rn.

Minimum jerk trajectory If we set the Lagrangian function L(t) as the squared-
norm of the linear jerk:

L = ...
p⊤

F

...
p F (10.2.8)

we notice that a trajectory composed by the concatenation of a 5th order polynomial
functions:

si : pF (t) = ai,5t
5 + ai,4t

4 + ai,3t
3 + ai,2t

2 + ai,1t+ ai,0, (10.2.9)

minimizes the jerk. The coefficients ai,j are chosen to satisfy the boundary conditions
of position, velocity and acceleration. Finally, the complete foot position minimum
acceleration trajectory is computed by attaching 5th-order polynomial functions as:

pF (t) =

a0,5t
5 + a0,4t

4 + a0,3t
3 + a0,2t

2 + a0,1t+ a0,0 if t0 ≤ t ≤ tapex

a1,5t
5 + a1,4t

4 + a1,3t
3 + a1,2t

2 + a1,1t+ a1,0 if tapex < t ≤ tN
(10.2.10)

Appendix D.3 presents all the passages required to evaluate a minimum jerk trajectory
in Rn.

Benchmarking of Simplified-Model Controllers for Locomotion 186

Swing foot orientation

During the walking gait, the swing foot rotates from the initial orientation IRF (t0) =
IRF0 to IRF (tN) = IRFN

. Similarly to what we discussed for the generation of position
trajectory, we now aim to compute a trajectory IRF (t) such that

• IRF (t0) = IRF0 and IRF (tN) = IRFN

• a suitable Lagrangian function L(t) is minimized.

We can now construct a minimum acceleration or a minimum jerk trajectory depending
on the objective function, L(t).

Minimum acceleration trajectory If we set the Lagrangian function L(t) as the
squared-norm of the right trivialized (inertial frame) angular acceleration Iω̇I,F :

L = Iω̇⊤
I,F

Iω̇I,F (10.2.11)

and we ask for a zero initial and final angular velocity, it is possible to show that the

IRF (t) = exp
(
s(t− t0) log

(
IRF (tN)IR⊤

F0

))
IRF0 , (10.2.12)

where s(τ) is given by

s(τ) = 3
(tN − t0)2 τ

2 − 3
(tN − t0)3 τ

3, (10.2.13)

minimizes the integral of the Lagrangian function (10.2.11) [Lynch and Park, 2017,
Section 9.2][Park and Ravani, 1997; Žefran et al., 1998, 1999]

In Appendix E, we present the theory behind the minimum acceleration trajectory
in SO(3).

Minimum jerk trajectory If we set the Lagrangian function L(t) as the squared
norm of the right trivialized (inertial frame) angular jerk Iω̈I,F :

L = Iω̈⊤
I,F

Iω̈I,F . (10.2.14)

and we ask for a zero initial and final angular velocity and acceleration, it is possible
to show that

IRF (t) = exp
(
s(t− t0) log

(
IRF (tN)IR⊤

F0

))
IRF0 (10.2.15)

Benchmarking of Simplified-Model Controllers for Locomotion 187

where s(τ) is given by

s(τ) = 6
(tN − t0)5 τ

5 − 15
(tN − t0)4 τ

4 + 10
(tN − t0)3 τ

3, (10.2.16)

minimizes the integral of the Lagrangian function (10.2.14) [Liu et al., 2017; Žefran
et al., 1999]

Differently from (10.2.12) and (10.2.13), to prove (10.2.15) and (10.2.16) we need
to exploit the mathematical tools of Differential Geometry. Since this topic is outside
the scope of the thesis, we avoid presenting the rigorous proof. The interested reader
can refer to the extensive literature, among which it is worth mentioning [Dubrovin
et al., 1984; Needham, 2021; Pressley, 2010; Selig, 2007; Žefran et al., 1998, 1999]

10.2.3 Simplified model control layer

As introduced in Section 4.4, the simplified model (4.4.14a) shows that the CoM
asymptotically converges to a constant DCM, while the DCM has an unstable first-
order dynamics (4.4.14b). In this section, we present control laws that aim at stabilizing
the DCM dynamics by assuming the location of the ZMP xZMP as the control input.

This stabilization problem has been tackled by designing and comparing instanta-
neous and predictive (MPC) control laws. Unlike the MPC, the instantaneous control
law does not solve any optimization problem, and it uses only the current desired and
actual position of the DCM to evaluate its output.

DCM instantaneous control

Differently from Englsberger et al. [2015a], we propose an instantaneous control law
that does not perform a cancellation of the unstable system dynamics, which, in
practice, is never perfect and can lead to system instabilities. More precisely, we chose

x∗
ZMP = ξref − 1

ζ
ξ̇ref +Kξ

p

(
ξ − ξref

)
+Kξ

i

∫
ξ − ξref d t. (10.2.17)

where Kξ
p > I2 and Kξ

i > 02×2

Applying the control input (10.2.17) to the system (10.1.15) leads to the following
closed-loop dynamics:

ξ̇ − ξ̇ref = ζ(I2 −Kξ
p)(ξ − ξref)− ζKξ

i

∫
ξ − ξref d t. (10.2.18)

Benchmarking of Simplified-Model Controllers for Locomotion 188

It is easy to show that the DCM error and its integral converge asymptotically to zero.
The above law (10.2.17) is very simple to implement and guarantees the tracking of
the desired DCM. The main limitation is that it may not ensure the feasibility of the
gait, since the position of the ZMP may exit the support polygon and, consequently,
the ZMP contact feasibility criterion [Vukobratovic and Juricic, 1969] may not be
guaranteed. Furthermore, the above instantaneous control law does not take into
account the desired DCM trajectory planned for the future.

DCM predictive control

In order to overcome these issues, we design a model predictive controller by following
the work of Krause et al. [2012]. The control objective is achieved by framing the
controller as a constrained optimization problem composed of three main elements,
namely: the prediction model, an objective function and a set of inequality constraints.

Prediction model In the MPC framework, we consider the dynamics of DCM
(10.1.15) as a prediction model. Equation (10.1.15) is discretized supposing piecewise
constant ZMP trajectories. By applying the Zero order hold technique presented in
Section 5.5.1, the discrete DCM dynamics writes as follows:

ξk+1 = Fξk +GxZMPk

=
eζT 0

0 eζT

 ξk+
1− eζT 0

0 1− eζT

xZMPk
.

(10.2.19)

where T is the fixed sampling time.

Objective function The objective function is defined in terms of two main tasks,
namely a tracking task and a control input regularization task.

To follow a desired DCM trajectory, we minimize the weighed norm of the error
between the robot DCM and the desired trajectory as:

Ψξ = 1
2
∥∥∥ξ − ξref

∥∥∥2

Λξ

, (10.2.20)

where Λξ is a positive definite diagonal matrix. On the other hand, to reduce the rate
of change of the ZMP, we minimize the ZMP derivative by considering the following
task:

ΨZMP = 1
2 ∥ẋZMP∥2

ΛZMP
. (10.2.21)

Benchmarking of Simplified-Model Controllers for Locomotion 189

With ΛZMP a diagonal positive matrix.

Inequality constraint In order to ensure that the stance foot does not rotate around
one of its edges, the desired ZMP must satisfy the contact stability criterion [Vuko-
bratović et al., 2004; Vukobratovic and Juricic, 1969]. This is verified by seeking for a
ZMP inside foot print, if the robot is in single support, or inside the convex hull of the
two feet, in the double support scenario. The H-rep (Section 5.1.2) is given by the
following set of inequalities:

AcxZMP ⪯ bc, (10.2.22)

where Ac and bc are time-variant and their dimension depends on the type of support.

MPC formulation Combining the cost functions (10.2.20) and (10.2.21), with the
prediction model (10.2.19) and the inequality constraints (10.2.22), we formulate
the MPC as an optimization problem. The MPC problem is transcribed using the
Direct Single Shooting method with a constant sampling time T – Section 5.5.2. The
desired ZMP, x∗

ZMP is generated by applying the receding horizon principle [Mayne and
Michalska, 1990] – Section 5.6. The MPC formulation is finally obtained by solving
the following optimization problem:

minimize
xZMPk

, k=[0 N]

N∑
k=0

(Ψξ + ΨZMP) (10.2.23a)

subject to ξk+1 = Fξk +GxZMPk
(10.2.23b)

Ack
xZMPk

⪯ bck
(10.2.23c)

ξ0 = ξ̄ (10.2.23d)
xZMP−1 = x̄ZMP. (10.2.23e)

where x̄ZMP is the desired ZMP calculated in the previous control iteration and ξ̄ is
the estimated DCM position.

Since the cost function is a quadratic positive function and the constraints are
linear, the optimal control problem is quadratic and can be transcribed into a strictly
convex quadratic programming problem (QP) (Section 5.4) of the form:

minimize
w

1
2w

⊤Hkw + g⊤
k w

subject to Ai
ck
w ⪯ bi

ck

Benchmarking of Simplified-Model Controllers for Locomotion 190

Figure 10.8 The iCub robot walks with the 3 layer controller architecture of Figure 10.1.

Here, the optimization variables are stacked inside the vector

w⊤ =
[
x⊤

ZMP0 . . . x⊤
ZMPN−1

]
. (10.2.24)

The Hessian matrixHk and the gradient vector gk derive from (10.2.23a). The inequality
constraint matrix Ai

ck
and vector bi

ck
embed the ZMP constraint (10.2.23c) and the

prediction model (10.2.23b).

ZMP-CoM Controller

Independently of the chosen DCM controller, namely the controller in Section 10.2.3 or
in 10.2.3, one obtains the desired position and velocity of ZMP and CoM to stabilize.
As a consequence, another control loop is needed after the DCM controller. Here, we
choose the proposed control law [Choi et al., 2007], i.e.:

ẋ∗
LIP = ẋref

LIP −KZMP(xref
ZMP − xZMP) +KLIP(xref

LIP − xLIP), (10.2.25)

where KLIP > ζI2 and 02 < KZMP < ζI2.

Benchmarking of Simplified-Model Controllers for Locomotion 191

10.3 Results

In this section, we present experiments obtained with several implementations of the
simplified model controllers, namely: the instantaneous and the predictive controllers.

To benchmark the different simplified model controllers, we test the algorithms on
the iCub humanoid robot v2.7 – Section 1.1.1. We attach the simplified control layer
to the three-layer controller architecture shown in Figure 6.1. In this framework, the
whole-body control layer implements the kinematics-based whole-body QP presented
in section 7.1. Figure 10.8 shows the humanoid robot iCub walking with the simplified
models controller presented in this chapter.

The control architecture runs on the iCub head’s computer, namely a 4-th generation
Intel ® Core i7 @ 1.7 GHz. In any of its implementations, the architecture takes (on
average) less than 3 ms to evaluate its output. The code is open source completely
developed in C++: https://github.com/robotology/walking-controllers. The
MPC problem presented in Section 10.2.3 is solved using the OSQP [Stellato et al.,
2018a] library 3.

Table 10.1 summarizes the maximum velocities achieved using the different imple-
mentations of the control architecture. In particular, the labels instantaneous and
predictive mean that the associated layer generates its output considering inputs and
references either at the single time t or for a time window, respectively. The labels,
velocity and position control, instead, mean that the layer outputs are either desired
joint velocities or position, respectively – see Section 7.1.3.

Let us remark that all the implemented control architectures exploit the controller
presented in Section 10.2.3 to attempt the stabilization of the desired center of pressure
and desired center of mass position and velocity. The performance of this controller is
highly dependent on the gains Kzmp and Kcom. In particular, we observed that the

Table 10.1 Maximum forward straight walking velocities achieved using different
implementations of the control architecture.

Simplified Model Control Whole-Body QP Control Max Straight Velocity (m/s)
Predictive Velocity 0.1563
Predictive Position 0.1645

Instantaneous Velocity 0.1809
Instantaneous Position 0.3372

3Since our code is written in pure C++, the QP problem is written by means of osqp-eigen a
C++ wrapper for OSQP https://github.com/robotology/osqp-eigen

https://github.com/robotology/walking-controllers
https://github.com/robotology/osqp-eigen

Benchmarking of Simplified-Model Controllers for Locomotion 192

Instantaneous + Position Control

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

-0.1

-0.05

0

0.05

0.1

(a) DCM

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) CoM

0 0.5 1 1.5 2 2.5 3
-0.1

0

0.1

0.2

0.3

0.4

-0.2

-0.1

0

0.1

0.2

(c) ZMP

Figure 10.9 Tracking of the DCM (a), CoM (b) and ZMP (c) using the instanta-
neous controller with the whole-body controller as position control. Walking velocity:
0.19 m s−1.

gains in achieving good tracking during standing and walking were not the same. For
this reason, we implemented a gain-scheduling technique depending on whether the
robot is walking or standing. The transition between the two sets of gains is smoothed
with a minimum jerk trajectory [Pattacini et al., 2010].

To compare the simplified models controllers, we decided to perform two main
experiments. These two experiments represent the maximum robot velocity that has
been achieved with all architectures and the maximum velocity achieved with a specific
architecture only – see Table 10.1. That is,

- Experiment 1: a forward robot speed of 0.1563 m s−1;

- Experiment 2: a forward robot speed of 0.3372 m s−1.

We compare the control laws (10.2.17) and (10.2.23), which both generate a (de-
sired) center of pressure that attempts to stabilize the desired DCM. To simplify the

Benchmarking of Simplified-Model Controllers for Locomotion 193

Predictive + Position Control

0 0.5 1 1.5 2 2.5 3
-0.1

0

0.1

0.2

0.3

0.4

-0.1

-0.05

0

0.05

0.1

0.15

(a) DCM

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) CoM

0 0.5 1 1.5 2 2.5 3
-0.1

0

0.1

0.2

0.3

0.4

-0.2

-0.1

0

0.1

0.2

(c) ZMP

Figure 10.10 Tracking of the DCM (a), CoM (b) and ZMP (c) using the MPC and
the whole-body controller as position control. Walking velocity: 0.19 m s−1.

comparison, the controller of the whole-body QP layer is kept fixed in this section, and
we show and discuss only the results when the robot is position controlled. A complete
comparison of the kinematics-based whole-body controllers is presented in Section 7.3.
In the following experiments, we set the time horizon of the predictive control to 2 s.

10.3.1 Experiment 1: a forward robot speed of 0.1563 m s-1

Figures 10.9a and 10.10a show the DCM tracking performances obtained with the
instantaneous and predictive controllers, respectively. Both controllers seem to show
good tracking performances, and the DCM error is kept below 5 cm in both cases. Note,
however, that the instantaneous controller induces faster variations of the measured
DCM. This contributes to the overall higher vibrations of the robot. One of the reasons
for this variation is that the instantaneous controller (10.2.17) injects a (desired) center
of pressure proportional to the measured DCM, which in turn contains the center
of mass velocity. To mitigate this, we may filter the joint velocities appropriately.

Benchmarking of Simplified-Model Controllers for Locomotion 194

Instantaneous + Position Control

0 0.5 1 1.5 2 2.5 3
0.6

0.7

0.8

0.9

1

-0.1

-0.05

0

0.05

0.1

(a) DCM

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) CoM

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

-0.2

-0.1

0

0.1

0.2

(c) ZMP

Figure 10.11 Tracking of the DCM (a), CoM (b) and ZMP (c) with the instantaneous
and whole-body QP control as position. Walking velocity: 0.41 m s−1.

However, in our case, the joint velocities were not filtered to avoid delays in the
measured DCM. Our experience showed that adding a filter to joint velocities is not
an easy task, and we did not find the right trade-off for obtaining overall performance
improvements.

Figures 10.9b and 10.10b present CoM tracking performances, which are mainly
dependent on the ZMP-CoM controller (10.2.25). This controller receives the desired
DCM values from the simplified model control layer, which are obtained with the
instantaneous or predictive controllers. In both cases, the CoM error is kept below
2 cm. Figures 10.9c and 10.10c represent the ZMP tracking performance, which is still
mainly dependent on the ZMP-CoM controller (10.2.25). It is important to note that
the desired ZMP is smoother when the simplified model control uses the predictive
law (10.2.23) to generate it. Indeed, this is a tunable property that depends on the
associated weight in the cost function of the MPC problem. Although this smoother
behavior contributes to less robot vibrations, overall robot performance became less
reactive and, consequently, less robust to robot falls. Although the extensive hand-made

Benchmarking of Simplified-Model Controllers for Locomotion 195

Predictive + Position Control

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.1

-0.05

0

0.05

0.1

(a) DCM

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) CoM

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

-0.2

-0.1

0

0.1

0.2

(c) ZMP

Figure 10.12 Tracking of the DCM (a), CoM (b) and ZMP (c) with the predictive and
whole-body QP control as position control. At t ≈ 2 s, the robot falls down. Walking
velocity: 0.41 m s−1.

tuning, we were not able to increase the robot velocity when the simplified model
control used the predictive law (10.2.23).

10.3.2 Experiment 2: a forward robot speed of 0.3372 m s-1

At a robot’s desired walking speed of 0.3372 m s−1, there is initially no significant
difference between the DCM tracking obtained with instantaneous and predictive
control laws – see Figures 10.12a and 10.11a for t < 1.5 s. However, fast robot
walking velocities require fast variations of the desired CoM and ZMP. This fast
variation degrades the performance of the predictive controller around t = 1.5 s – see
Figure 10.12c. Clearly, these bad performances, in turn, induce poor tracking of the
DCM shown in Figure 10.12a at t ≈ 2 s, and consequently the robot falls. At this point,
one is tempted to increase the gain KZMP of the controller (10.2.25), which shall induce
a better tracking of the ZMP. Unfortunately, this leads to higher robot oscillations
induced by the noise on the estimated ZMP. And, as a consequence, the robot falls.

Benchmarking of Simplified-Model Controllers for Locomotion 196

We can conclude that the predictive simplified control is much less robust than the
instantaneous simplified control with respect to ZMP tracking errors. Adding a low-pass
filter to the ZMP measurement may improve the overall performance. However, in
our case, adding filters led to slower system response and, consequently, to the robot
falling.

10.4 Conclusions

This chapter contributes to the benchmarking of different implementations of state-
of-the-art control simplified model controllers for humanoid robot locomotion. In
particular, we proposed two simplified controllers which exploit the concept of the
Divergent Component of Motion. In particular, we discussed the results obtained with
the predictive and instantaneous controller implementations. Furthermore, we compare
the performance obtained by controlling the robot in position and velocity.

We show that the proposed instantaneous controllers combined with the robot
position control allowed us to achieve a desired walking speed of 0.3372 m s−1, which is
the highest walking velocity achieved by the iCub robot v2.7.

A possible future work is the implementation of an online footstep adjustment
algorithm [Griffin and Leonessa, 2016; Shafiee et al., 2019; Shafiee-Ashtiani et al.,
2017b] This will increase the overall robustness in case of a disturbance acting on the
robot.

It is worth mentioning that the presented simplified model controller relies on the
assumption of a constant height of the center of mass. In the next chapter, we will
attempt to loosen this hypothesis by designing a controller that considers the reduced
centroidal dynamics of the system. By modeling the system using a reduced model
instead of a simplified one, we will achieve highly dynamic robot motions that can be
performed online. Furthermore, the footstep adjustment is considered in the centroidal
dynamics stabilization problem, so it is not required to design an ad-hoc block for this
feature.

Chapter 11

Non-Linear Centroidal Model
Predictive Controller

In Chapter 10 we benchmarked several implementations of simplified model controllers.
Modeling the robot with a simplified model may restrict the motion of the robot to
a well-defined subset of motion primitives. For example, when the robot is described
using a LIPM (see Section 4.1), the CoM height must be kept constant and at least
one foot must be in contact with the environment. This chapter attempts at lowering
this limitation by presenting a Non-Linear Model Predictive Controller for humanoid
robot locomotion with online step adjustment capabilities. The proposed controller
considers the centroidal dynamics of the system to compute the desired contact forces,
torques, and contact locations. Differently from bipedal walking architectures based on
simplified models, the presented approach considers the reduced centroidal model, thus
allowing the robot to perform highly dynamic movements while keeping the control
problem still treatable online. We show that the proposed controller can automatically
adjust the contact location in both single- and double-support phases. The overall
approach is then tested with a simulation of one-leg and two-leg systems performing
jumping and running tasks, respectively. Finally, we validate the proposed controller
in a specific version of the three-layer controller architecture of Figure 6.1. However,
differently from the original design, the simplified model controller is replaced by the
Reduced model control layer that implements the controller presented in this chapter –
see Figure 11.1. The overall architecture is finally tested on the position-controlled
Humanoid Robot iCub v3 – Section 1.1.2. The results show that the proposed strategy
prevents the robot from falling while walking and pushed with external forces up to 40
Newton for 1 second applied to the robot arm.

Non-Linear Centroidal Model Predictive Controller 198

Trajectory
Optimization

Centroidal
MPC

Whole-Body
Controller

Humanoid
Robot

Figure 11.1 Centroidal MPC embedded into a three layer controller architecture.

The chapter is organized as follows. Section 11.1 introduces the control problem.
Section 11.2 presents the simulation results for different kinds of floating base systems
and on the position-controlled Humanoid Robot iCub v3 – Section 1.1.2. Finally,
Section 11.3 concludes the chapter.

The content of this chapter appears in:

Romualdi, G., Dafarra, S., L’Erario, G., Sorrentino, I., Traversaro, S.,
and Pucci, D. (2022a). Online Non-linear Centroidal MPC for Humanoid
Robot Locomotion with Step Adjustment. In 2022 International Confer-
ence on Robotics and Automation (ICRA), pages 10412–10419. IEEE

Video https://www.youtube.com/watch?v=u7vCgE2w_vY9
GitHub ami-iit/paper_romualdi_2022_icra_centroidal-

mpc-walking

11.1 Centroidal model predictive controller

Let us assume the presence of a high-level contact planner that generates only the
contact location and times, for example, the one presented in Section 10.1.2 [Dafarra
et al., 2018]. The control objective of the reduced model is to implement a control law
that generates feasible contact wrenches Ci[I]fi and locations pi while considering the
centroidal dynamics of the floating base system and a nominal set of contact positions
and timings. Here we denote by Ci[I] = (pi, I), the frame placed on the robot contact
location pi and oriented as the inertial frame I, where i ∈ N such that 1 ≤ i ≤ nc,
with nc is the number of admissible contacts. The control problem is formulated using
the Model Predictive Control (MPC) framework.

https://www.youtube.com/watch?v=u7vCgE2w_vY9
https://github.com/ami-iit/paper_romualdi_2022_icra_centroidal-mpc-walking
https://github.com/ami-iit/paper_romualdi_2022_icra_centroidal-mpc-walking

Non-Linear Centroidal Model Predictive Controller 199

The control objective is achieved by framing the controller as a constrained opti-
mization problem composed of three main elements, namely: the prediction model, an
objective function, and a set of inequality constraints.

What follows is a complete description of the task composing the optimal control
problem. In mode detail, Section 11.1.1 introduces the model considered in the
controller as prediction. Section 11.1.2 presents the terms that describe the control
objective. Finally, in Section 11.1.3 we discuss the inequality constraints required to
guarantee a feasible walking pattern.

11.1.1 Prediction model

Given a frame Ḡ = (xCoM, [I]), the centroidal momentum rate of change Ḡḣ balances
the external spatial force applied to the robot (3.4.6):

Ḡḣ =
nc∑

j=1

 I3 03×3

(pj − xCoM)× I3

 Cj [I]fj +mḡ, (11.1.1)

where ḡ =
[
0 0 −g 0 0 0

]⊤
is the 6D gravity acceleration vector.

We now recall that, given a rigid body in contact with a rigid environment and
assuming that the contact surface is described by a rectangle. Then, the contact wrench
acting on the rigid body is uniquely described by four pure forces acting on the corner
of the contact surface [Caron et al., 2015]. Indeed, in the case of a rectangular contact
surface, twelve variables define the six-dimensional wrench. Thanks to this choice,
several contact configurations can be modeled independently, depending on the number
of points in contact [Dafarra et al., 2020; Dai et al., 2014]. Given the relation between
pure forces and contact wrench, we rewrite the centroidal dynamics (11.1.1) as follows:

Ḡḣ =
nc∑

i=1

nv∑
j=1

 I3

(pi +RCi
Cipvi,j

− xCoM)×

 fi,j +mḡ. (11.1.2)

We denote by nv the number of vertices associated with the contact surface, commonly
nv = 4. Cipvi,j

is the position of the vertex j of the contact i expressed with respect to
the frame associated with the contact surface Ci. fi,j is the pure force applied to the
vertex j of the contact i expressed in the inertial frame I.

Assume a rigid body that interacts with the environment. The contact force is
supposed to be non-null only if the point is in contact with the environment. The

Non-Linear Centroidal Model Predictive Controller 200

condition is called complementary condition and writes as:

h(pi)n(pi)⊤fi = 0, (11.1.3)

where h computes the distance between the point pi and the environment and n(pi)
returns the normal direction to the contact surface at the point pi.

Since the proposed controller assumes the knowledge of the contact sequence, it is
possible to define the variable Γi ∈ {0, 1} for each contact. Γi represents the contact
state at a given instant. Γi(t) = 0 indicates that the contact i-th is not active at
the time t, while, when Γi(t) = 1 the contact is active. Due to this assumption,
it is not necessary to introduce the contact force complementary condition (11.1.3).
In fact, considering the complementary condition in an optimization algorithm may
cause problems for the nonlinear optimization solvers because the constraint Jacobian
becomes singular, thus violating the linear independence constraint qualification (LICQ)
on which most solvers rely – see Section 5.3.3 [Betts, 2010]. As a consequence of the
introduction of Γi, (11.1.2) is rewritten as

Ḡḣ=
nc∑

i=1

nv∑
j=1

 I3

(pi +RCi
Cipvi,j

− xCoM)×

Γifi,j +mḡ (11.1.4a)

= F (pi, xCoM, fi,j) . (11.1.4b)

In F , we explicitly express the dependency on the unknown variables, namely: the
contact location pi, the CoM position xCoM and the contact forces fi,j. We finally
notice that the centroidal angular momentum dynamics (11.1.4) is not convex in the
variables fi,j, pi xCoM, this fact may induce to complexity in treating the centroidal
dynamics as a prediction model.

Since the MPC aims to compute the control outputs online, the optimal control
problem formulation should be as general as possible in the number of active contact
phases in the prediction windows. For this reason, we consider each contact location
as a continuous variable subject to the following dynamics:

ṗi = (1− Γi)vi, (11.1.5)

where we define vCi
as the contact velocity1. To give the reader a better understanding

of Equation (11.1.5), we can imagine that when the contact is active, that is, Γi = 1,
1We want to warn the reader that the term contact velocity could be misleading. Indeed, when

the contact is active, its velocity is always assumed to be zero. vi is just an auxiliary variable that

Non-Linear Centroidal Model Predictive Controller 201

(11.1.5) becomes ṗi = 0. In other words, the contact location is kept constant if the
contact is active.

11.1.2 Objective function

The objective function is defined in terms of several tasks. In the following sections,
we discuss the contribution of each task.

Contact force regularization

Each contact link is subject to the effect of different contact forces. Since the net effect
is given by the sum of all these forces, we want them to be as similar as possible. As a
consequence, we add a task that weighs the difference of each contact force from the
average for a given contact link:

Ψfi,j
= 1

2

∥∥∥∥∥ 1
nv

nv∑
w=1

fi,w − fi,j

∥∥∥∥∥
2

Λfi,j

, (11.1.6)

where Λfi,j
is a positive definite diagonal matrix, i.e., Λfi,j

⪰ 0. fi,w is given by the
sum of all the forces acting by the environment on the link i in contact as

fi,w =
nv∑

w=1
fi,j. (11.1.7)

To prevent the controller from providing solutions with a huge rate of change of
the contact force, we decided to minimize the contact force derivative by considering
the following task:

Ψḟi,j
= 1

2
∥∥∥ḟi,j

∥∥∥2

Λḟi,j

, (11.1.8)

where Λḟi,j
is a positive defined diagonal matrix. In our control problem, the time

derivative of the contact force ḟi,j is not considered as an optimization variable. To
overcome this limitation, we decided to replace ḟi,j with its first-order numerical
approximation:

ḟi,j = fi,j[k]− fi,j[k − 1]
d t . (11.1.9)

Here, d t is the controller sampling rate. fi,j[k] fi,j[k − 1] represent, respectively, the
contact force at the time instant t0 +k d t and t0 +(k−1) d t. Substituting (11.1.9) into

allows us to treat the contact location as a continuous variable; vi will be different from zero only
when the contact is not active.

Non-Linear Centroidal Model Predictive Controller 202

the task (11.1.8), we obtain the final formulation of the contact force rate-of-change
regularization task.

Ψḟi,j
= 1

2

∥∥∥∥∥fi,j[k]− fi,j[k − 1]
d t

∥∥∥∥∥
2

Λḟi,j

. (11.1.10)

Centroidal momentum tracking task

To follow a desired centroidal momentum trajectory, we minimize the weighted norm of
the error between the robot’s centroidal quantities and the desired nominal trajectory:

Ψh = 1
2
∥∥∥Ḡh

ωn − Ḡh
ω
∥∥∥2

Λh

+ 1
2 ∥x

n
CoM − xCoM∥2

ΛCoM
, (11.1.11)

where Λh and ΛCoM are two positive definite diagonal matrices. The desired angular
momentum Ḡh

ωn and CoM position xn
CoM, should be considered as regularization terms.

As a consequence, their purpose is to drive the optimal control problem to the desired
feasible solution. In other words, Ḡh

ωn and xn
CoM could not be a dynamically consistent

trajectory. In our specific scenario we consider Ḡh
ωn always equal to zero, while xn

CoM

is a fifth-order spline passing through the nominal contact locations, whose initial and
final velocity and acceleration are zero.

Contact location regularization

To reduce the difference between the nominal contact location and the one computed
by the controller, we consider the following regularization task:

Ψpi
= 1

2 ∥p
n
i − pi∥2

Λpi
. (11.1.12)

Here pCn
i

is the nominal contact position provided by a high-level planner, and Λpi
is a

positive definite diagonal matrix.

11.1.3 Inequality constraints

This section contains the two sets of inequality constraints considered in the optimal
control problem.

Non-Linear Centroidal Model Predictive Controller 203

feasibility region nominal
contact

computed
contact

I

pn
i

pi

Figure 11.2 The contact feasibility region.

Contact force feasibility

Similar to what we discuss for the whole-body controllers 7.2.1 and 8.2.1, to guarantee
a weakly stable contact [Caron et al., 2015], the contact force should belong to a
second-order cone (4.1.1). However, to simplify the friction constraint, the friction
cone is often approximated by the conic combination of n vectors – Section 5.1.2. The
half-space representation of the friction cone approximation is given by a set of linear
inequalities of the form

A CiRCi[I] fi,j ⪯ b. (11.1.13)

Here A and b are constants and depend only on the static friction coefficient.

Contact location constraint

The proposed controller aims to compute the contact location. In particular, the
new contact position should belong to the feasibility region described by a rectangle
containing the nominal contact location – Figure 11.2.

We introduce the contact location constraint as

lb ⪯ CiRI(pn
i − pi) ⪯ ub, (11.1.14)

where lb and ub are the lower and upper bounds of the rectangle represented in the
frame attached to the contact Ci.

Non-Linear Centroidal Model Predictive Controller 204

11.1.4 MPC formulation

Combining the set of tasks presented in Section 11.1.2, with the prediction models of
Section 11.1.1 and the inequality constraints described in Section 11.1.3), we formulate
the MPC as an optimization problem.

The MPC problem is solved using a Direct Multiple Shooting method [Betts, 2010]
– Section 5.5.2. We discretize the centroidal dynamics (11.1.4) and the contact location
dynamics (11.1.5) by applying the Forward Euler technique with a constant sampling
time d t – Equation (5.5.8). The controller outputs are generated using the Receding
Horizon Principle [Mayne and Michalska, 1990], adopting a fixed prediction window
with a length equal to N samples – Section 5.6.

The MPC formulation is finally obtained by solving the following optimization
problem:

minimize
Xk,Uk,

k=[0,N]

N∑
k=0

∑
i,j

Ψfi,j
+
∑
i,j

Ψḟi,j
+ Ψh +

∑
i

Ψpi

 (11.1.15a)

subject to Ḡh[k + 1] = F (pi, xCoM, fi,j) d t+ Ḡh[k] (11.1.15b)

xCoM[k + 1] = Ḡh
p[k]
m

d t+ xCoM[k] (11.1.15c)
pi[k + 1] = pi[k] + (1− Γi[k])vi[k] d t (11.1.15d)
A CiRCi[I] fi,j ⪯ b. (11.1.15e)
lb ⪯ CiRI(pn

i − pi) ⪯ ub. (11.1.15f)

Where the contact dynamics constraint (11.1.15d), the contact force feasibility (11.1.15e)
and the contact position constraint (11.1.15f) are repeated for each admissible contact.
Xk and Uk contain, respectively, the controller state and output at a time instant k:

X⊤
k =

[
xCoM[k]⊤ Ḡh[k]⊤ pi[k]⊤

]
, (11.1.16a)

U⊤
k =

[
fi,j[k]⊤ vi[k]⊤

]
. (11.1.16b)

At every time step d t, we solve the optimization problem (11.1.15), then we apply
the control output U0 only, discarding all the other control inputs. The time horizon is
shifted to an amount equal to d t and the optimal control problem (11.1.15) is solved
again with different initial conditions.

Since the centroidal dynamics (11.1.2) is a nonlinear non-convex function, the
optimizer may find a local minimum. This may result in a suboptimal solution for the

Non-Linear Centroidal Model Predictive Controller 205

One-leg jumping robot

0 0.2 0.4 0.6 0.8 1
x (m)
(b)

0

0.1

0.2

y
(m

)

Adapted footstep Nominal footstep CoM External Disturbance

0 1 2 3 4 5
time (s)

(c)

0
20
40
60

fo
rc

e
(N

)

fx fy fz0

0.2

0.2

z
(m

)

1

0.4

0.8

y (m)

0

x (m)
(a)

0.6
0.4-0.2 0.2

0

Figure 11.3 (a)-(b) Trajectories generated by the MPC on a one-leg robot performing
a jumping task. (c) Desired contact forces.

given task. As a consequence, the initialization of the solver may play a crucial role to
drive the optimizer to the desired solution. In our case, the CoM is initialized with the
nominal CoM trajectory xn

CoM, while all other variables are set to zero.

11.2 Results

In this section, we present the validation results of the control strategy presented in
Section 11.1. CasADi [Andersson et al., 2018] and IPOPT 3.13.4 [Wächter and Biegler,
2006] with HSL_MA97 [Hogg and Scott, 2011] libraries are used to solve the non-linear
optimization problem. The code is written in pure C++ and is available at https://
github.com/ami-iit/paper_romualdi_2022_icra_centroidal-mpc-walking.

To validate the performance of the proposed control, we present two main exper-
iments. First, we test the centroidal MPC considering only the centroidal Dynam-
ics (11.1.2) for a one-leg and two-legs floating base systems. Secondly, we present
the results obtained with the implementation of the control architecture shown in
Figure 11.1 on the iCub Humanoid Robot V3 – Section 1.1.2. In both scenarios, we
analyze the performance of the controller while running on a 10th generation Intel®

Core i7-10750H laptop equipped with Ubuntu Linux 20.04.

https://github.com/ami-iit/paper_romualdi_2022_icra_centroidal-mpc-walking
https://github.com/ami-iit/paper_romualdi_2022_icra_centroidal-mpc-walking

Non-Linear Centroidal Model Predictive Controller 206

Two-legs running robot

0 0.5 1 1.5
x (m)
(b)

-0.2

0

0.2

y
(m

)

Adapted footstep Nominal footstep CoM External Disturbance

0 1 2 3 4 5
time (s)

(c)

0
20
40
60

fo
rc

e
(N

)

fx fy fz
0

0.2

0.4

0.6

z
(m

)

0.2

y (m)

0 1.5

x (m)
(a)

1-0.2 0.5-0.4 0

Figure 11.4 (a)-(b) Trajectories generated by the MPC on a two-legs robot performing
a running task. (c) Desired contact forces.

11.2.1 Reduced models simulation

Figure 11.3 shows the trajectory generated by the centroidal MPC in the case of a
floating base system equipped with one leg. The system has a mass of 1 kg and the foot
is approximated by a point, i.e., nc = 1 and nv = 1 in Equation (11.1.2). The MPC
takes (on average) less than 20 ms for evaluating its output. At t ≈ 1 s an external
force of magnitude 5 N acts for 0.5 s at the system CoM. The MPC automatically
compensates the disturbance effect by adapting the location of the footstep with an
average of 10 cm - Figures 11.3a and 11.3b. Figure 11.3c shows the contact force
computed by the controller.

Figure 11.4 presents the trajectory generated by the centroidal MPC in the case of
a floating base system equipped with two legs. The system weighs 1 kg and has a foot
length and width of 20 cm and 10 cm, respectively. In this case, nc = 2 and nv = 4
in Equation (11.1.2). The MPC takes (on average) less than 80 ms for evaluating its
output. In this experiment, we analyze the capabilities of the MPC in the transition
from locomotion to running. At t ≈ 1 s the planned contact sequence switches from
a bipedal locomotion pattern, where a single support phase is always preceded by
a double support phase, to a running pattern, where the single support phases are
followed by aerial phases. Furthermore, at t ≈ 1.5 s an external force of magnitude 5 N
acts for 0.5 s at the robot CoM. The MPC handles the transition from locomotion to
running, while dealing with the external disturbance effect. Figs. 11.4a and 11.4b show,
in blue, the optimal contact location computed by the controller. The distance between

Non-Linear Centroidal Model Predictive Controller 207

Figure 11.5 The iCub humanoids robot react to an external disturbance.

the nominal contact and the computed one is (on average) 6 cm. Finally, Figure 11.4c
shows the contact force computed by the controller.

11.2.2 Test on the iCub Humanoid Robot

To validate the performance of the centroidal MPC on humanoid robots, we attached
the controller to the three-layer architecture presented in Chapter 8 and 7 as show in
Figure 11.1. In this scenario, trajectory optimization layer is responsible for generating

Non-Linear Centroidal Model Predictive Controller 208

the nominal contact locations and timings. The nominal contact pose is considered as
a regularization term for the contact position (11.1.12) and to compute the regularized
CoM trajectory (11.1.11). The centroidal MPC generates the feasible contact wrenches
for the current active contacts and the new locations of the future active contacts. The
future contact location is then set in the swing foot trajectory planner to generate a
smooth trajectory for the foot. Finally, the inner whole-body control loop evaluates the
generalized velocity of the robot, ν, by implementing the kinematics-based control law
presented in Section 7.1. Here, the stack of tasks considers the references computed by
the centroidal MPC. As in Section 7.1, the tracking of the feet and the CoM trajectories
are considered as high priority tasks, while the torso orientation is treated as a low
priority task. Furthermore, to attempt the stabilization of the zero-dynamics of the
system, a postural term is added as a low-priority task. The joint velocities ṡ included
in the solution of the above problem are then integrated to obtain the joint position
references for the low-level position controller. In our implementation, the whole-body
control layer takes (on average) less than 1 ms to evaluate its outputs.

To analyze the step recovery capabilities of the whole architecture, the robot is
perturbed by an external force acting on the right arm while walking. Since the robot is
position controlled, it behaves rigidly when an external force is applied. Consequently,
the position of the CoM is not perturbed. To mitigate this effect, we consider the
estimated external force as a measured disturbance in the MPC. To do so, we modified
the centroidal dynamics considered as the prediction model (11.1.4) as:

Ḡḣ=
nc∑

i=1

nv∑
j=1

 I3

(pi +RCi
Cipvi,j

− xCoM)×

Γifi,j +mḡ + Ḡfext (11.2.1a)

= F (pi, xCoM, fi,j, Ḡfext) . (11.2.1b)

where Ḡfext is the measured external wrench expressed in the Ḡ frame. The measured
contact wrench is considered different from zero only during the first index in the
prediction horizon. in other words, in (11.1.15b), Ḡfext[k] ̸= 0 only if k = 0.

As shown in Figure 11.6c, the centroidal MPC takes less than 60 ms to evaluate its
output. At t ≈ 8 s and t ≈ 11 s an external force of magnitude 40 N acts for 1 s on the
robot right arm – second picture in Figure 11.5.

The external force is estimated considering the Force Torque sensors mounted on
the robot arms and the joint state applying the algorithm discussed in Traversaro
[2017]. The MPC considers the external disturbance to propagate the centroidal

Non-Linear Centroidal Model Predictive Controller 209

iCub walking

-0.2 0 0.2 0.4 0.6 0.8
x (m)
(b)

-0.1

0

0.1

0.2

y
(m

)

Adapted footstep Nominal footstep CoM Desired CoM External Disturbance

0 5 10 15 20
time (s)

(c)

30

40

50

60

C
om

p
u
ta

ti
o
n

ti
m

e
(m

s)

0

0.2

0.8

z
(m

)

0.4

-0.20.6

0.6

0.4

x (m)
(a)

0

y (m)

0.2
0 0.2-0.2

Figure 11.6 (a)-(b) Trajectories generated by the three-layer controller architecture on
the iCub robot. (c) Computation time.

dynamics (11.2.1) and automatically compensates for the disturbance effect by adapting
the location of the footstep with an average of 5 cm – Figures 11.6a and 11.6b.

11.3 Conclusions

This chapter discusses the development of an online centroidal momentum non-linear
MPC for humanoid robots. The controller aims to generate feasible contact locations
and wrenches for locomotion. Different from state-of-the-art architectures based on
simplified models (e.g. LIPM), the proposed controller can be used to perform highly
dynamic movements, such as jumping and running. Furthermore, the contact location
adjustment is considered in the centroidal dynamics stabilization problem, so it is not
required to design an ad-hoc block for this feature. We validate the controller with
a simulation of one-leg and two-leg systems performing jumping and running tasks,
respectively. The centroidal MPC is also embedded in the three-layer position-based
control architecture and tested on the humanoid robot iCub v3 – see Section 1.1.2.
The proposed strategy prevents the robot from falling while walking and pushed with
external forces up to 40 N for 1 second applied to the robot arm.

In future work, we may extend the MPC to consider the contact timing adjustment,
thus increasing the robustness properties against unpredictable external disturbances.
Another interesting research direction is to substitute the Euler integrator required

Non-Linear Centroidal Model Predictive Controller 210

to transcribe the optimal control problem into an MPC 11.1.4 with a multi-rate
sampling technique [Elobaid et al., 2019, 2020b]. Considering a multi-rate sampling
technique, it would be possible to reduce the prediction model’s discretization error. To
improve the time performance, we may consider applying the convex relaxation of the
angular momentum dynamics [Ponton et al., 2018, 2016] in the controller prediction
model. As a consequence, it would be possible to solve the non-linear optimization
problem (11.1.15) by using a convex programming solver and thus increasing the
MPC frequency. Finally, to improve the overall time performance, we plan to warm
start the non-linear optimization problem with the result of a human-like trajectory
planner [Viceconte et al., 2022].

Epilogue

This thesis presented an application of different model-based controllers for time-
critical humanoid locomotion. Exploiting a three-layer model-based architecture, we
investigated the specific implementation of each block when the considered models
change. Part II presents the design of three whole-body controllers for humanoid
robot locomotion. The proposed controllers employ similar control algorithms and the
main distinguishing factors are the robot and the description of the environment. In
Chapter 7 we compared whole-body controllers for locomotion on rigid surfaces. In this
chapter, we proposed a kinematics-based and a dynamics-based whole-body controllers.
The experiments were carried out on the Humanoid Robot iCub v2.7. We showed
that when the robot is position controlled, the architecture was able to achieve the
highest walking velocity. On the other hand, we noticed that unstructured uncertainty
and the low reliability of the low-level torque-control loop, possibly due to the lack of
collocated joint torque sensing, prevented the torque-based architecture from reaching
the same performance obtained in simulation.

Motivated by curiosity, we began investigating the consequences of loosening the
assumption of the rigid contact model hypothesized in Chapter 7. Chapter 8 proposes
a contact model that describes the mechanical characteristics of a visco-elastic carpet.
To keep the problem still treatable online, we model the system as a continuum spring-
damper system rather than exploiting the finite element method (FEM). In fact, while
providing enhanced modeling capabilities, FEM methods demand heavy computational
time, which usually prohibits their use in time-critical feedback control applications.
The whole-body controller then considers the model to compute viable joint torques,
allowing the robot to perform a locomotion task. Results are shown only in simulation.
The poor performance of the low-level controller along with too noisy contact force
information prevents us from achieving acceptable results on iCub.

Both the architectures presented in Chapters 7 and 8 assume that the robot links
do not deform during this locomotion task. In Chapter 9 we attempted to loosen

Epilogue 212

this assumption by modeling the link flexibility with passive visco-elastic joints. We
proposed a whole-body controller that considers the joint elasticity while computing
the desired actuated joint torques. Furthermore, since in our case the deflection was
not directly measurable, we proposed an observer aiming at estimating the flexible joint
state, considering the measured contact force and the actuated joint state. Results are
shown only in simulation.

Part III analyzed the outer loops of the three-layer controller architecture. Chap-
ter 10 presented and compared several DCM based kinematic-based architectures.
Keeping a fixed trajectory optimization layer, we designed two simplified model con-
trollers: an instantaneous controller and an MPC controller. We benchmarked the two
strategies on the Humanoid Robot iCub v2.7. We noticed that the computed ZMP
is smoother when the simplified model control uses the predictive law to generate it.
However, although this smoother behavior did contribute to fewer robot vibrations,
the overall robot performance became less reactive, and as a consequence, the robot
may fall. On the other hand, when the robot is position-controlled and the simplified
layer implements the proposed instantaneous controller, iCub was able to reach the
desired walking speed of 0.3372 m s−1. That is, to the best of our knowledge, the
highest walking velocity achieved by the iCub robot v2.7.

Motivated by the results obtained from the simplified controller, we decided to
investigate whether, by increasing the complexity of the model, we were able to improve
the robustness of the control architecture in the case of unexpected interactions with
the environment. Chapter 11 attempted to answer this question. We presented a
Non-Linear Model Predictive Controller for humanoid robot locomotion with online
step adjustment capabilities. Differently from bipedal walking architectures based
on simplified models, the presented approach considers the reduced centroidal model,
thus allowing us to consider the contact location adjustment directly in the dynamics
stabilization problem, while keeping the control problem still treatable online. The
approach was validated in the position-controlled Humanoid Robot iCub v3.

In summary, satisfactory experiments on the real robot could be achieved only
when the robot was in position control, keeping the torque control walking still an
open question in the case of a robot with non-collocated torque sensing. In all the
architectures presented in Part II and Chapter 10, the contacts are planned without
taking into consideration the state of the robot. Chapter 11, addressed this issue
by letting the optimizer determine where to place the contact. This choice had the
drawback of complexifying the overall architecture. In the case of flat terrain, simplified

Epilogue 213

models are still one of the best choices in terms of complexity and robustness capabilities.
On the other hand, we believe that reduced model controllers are one of the best
trade-offs between an offline predictive planner that considers the complete robot
description and a simplified model controller that relays on a tailored model depending
on the desired task.

In the Prologue, we mentioned that the future of humanoid robotics is the safe
interaction between robots and humans in a human-like environment. The road to
achieving this goal is still long and full of pitfalls. We hope that the controllers
presented in this thesis may help humankind to take a step forward in this direction.

References

Aceituno-Cabezas, B., Mastalli, C., Dai, H., Focchi, M., Radulescu, A., Caldwell, D. G.,
Cappelletto, J., Grieco, J. C., Fernandez-Lopez, G., and Semini, C. (2017). Simul-
taneous Contact, Gait and Motion Planning for Robust Multi-Legged Locomotion
via Mixed-Integer Convex Optimization. IEEE Robotics and Automation Letters,
3(3):1–1.

Allgöwer, F., Badgwell, T. A., Qin, J. S., Rawlings, J. B., and Wright, S. J. (1999).
Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory
Overview. Advances in Control, pages 391–449.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2018). CasADi:
a software framework for nonlinear optimization and optimal control. Mathematical
Programming Computation 2018 11:1, 11(1):1–36.

Arakawa, T. and Fukuda, T. (1997). Natural motion generation of biped locomotion
robot using hierarchical trajectory generation method consisting of GA, EP layers. In
Proceedings of International Conference on Robotics and Automation, pages 211–216.
IEEE.

Ascher, U. M., Ruuth, S. J., and Spiteri, R. J. (1997). Implicit-explicit Runge-
Kutta methods for time-dependent partial differential equations. Applied Numerical
Mathematics, 25(2-3):151–167.

Axehill, D. and Hansson, A. (2006). A Mixed Integer Dual Quadratic Programming
Algorithm Tailored for MPC. In Proceedings of the 45th IEEE Conference on Decision
and Control, pages 5693–5698. IEEE.

Azad, M. and Featherstone, R. (2014). A new nonlinear model of contact normal force.
IEEE Transactions on Robotics.

Azad, M., Ortenzi, V., Lin, H. C., Rueckert, E., and Mistry, M. (2016). Model
estimation and control of compliant contact normal force. In IEEE-RAS International
Conference on Humanoid Robots.

Bellman, R. (1952). On the Theory of Dynamic Programming. Proceedings of the
National Academy of Sciences, 38(8):716–719.

Bemporad, A., Fukuda, K., and Torrisi, F. D. (2001). Convexity recognition of the union
of polyhedra. Computational Geometry: Theory and Applications, 18(3):141–154.

REFERENCES 215

Bemporad, A., Heemels, W., and De Schutter, B. (2002). On hybrid systems and
closed-loop MPC systems. IEEE Transactions on Automatic Control, 47(5):863–869.

Bertolazzi, E., Biral, F., and Da Lio, M. (2005). Symbolic–Numeric Indirect Method
for Solving Optimal Control Problems for Large Multibody Systems. Multibody
System Dynamics, 13(2):233–252.

Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. Society for Industrial and Applied Mathematics.

Biral, F., Bertolazzi, E., and Bosetti, P. (2016). Notes on Numerical Methods for Solving
Optimal Control Problems. IEEJ Journal of Industry Applications, 5(2):154–166.

Bock, H. and Plitt, K. (1984). A Multiple Shooting Algorithm for Direct Solution of
Optimal Control Problems *. IFAC Proceedings Volumes, 17(2):1603–1608.

Bombile, M. and Billard, A. (2017). Capture-Point Based Balance and Reactive
Omnidirectional Walking Controller. In IEEE RAS International Conference on
Humanoid Robots, number EPFL-CONF-231920.

Borrelli, F., Bemporad, A., and Morari, M. (2017). Predictive Control for Linear and
Hybrid Systems. Cambridge University Press.

Borst, C., Wimböck, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., Giordano,
P. R., Konietschke, R., Sepp, W., Fuchs, S., Rink, C., Albu-Schäffer, A., and
Hirzinger, G. (2009). Rollin’ Justin - Mobile platform with variable base. Proceedings
- IEEE International Conference on Robotics and Automation.

Bouyarmane, K. and Kheddar, A. (2011). FEM-based static posture planning for a hu-
manoid robot on deformable contact support. In 2011 11th IEEE-RAS International
Conference on Humanoid Robots, pages 487–492. IEEE.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press.

Budhiraja, R., Carpentier, J., Mastalli, C., and Mansard, N. (2018). Differential
Dynamic Programming for Multi-Phase Rigid Contact Dynamics. In 2018 IEEE-
RAS 18th International Conference on Humanoid Robots (Humanoids), pages 1–9.
IEEE.

Buss, S. R. and Kim, J.-S. (2005). Selectively Damped Least Squares for Inverse
Kinematics. Journal of Graphics Tools, 10(3):37–49.

Caron, S. (2020). Biped Stabilization by Linear Feedback of the Variable-Height
Inverted Pendulum Model. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 9782–9788. IEEE.

Caron, S., Kheddar, A., and Kheddar Multi, A. (2016). Multi-contact Walking Pattern
Generation based on Model Preview Control of 3D COM Accelerations. pages
550–557.

REFERENCES 216

Caron, S. and Pham, Q. C. (2017). When to make a step? Tackling the timing problem
in multi-contact locomotion by TOPP-MPC. IEEE-RAS International Conference
on Humanoid Robots, pages 522–528.

Caron, S., Pham, Q. C., and Nakamura, Y. (2015). Stability of surface contacts for
humanoid robots: Closed-form formulae of the Contact Wrench Cone for rectangu-
lar support areas. Proceedings - IEEE International Conference on Robotics and
Automation, 2015-June(June):5107–5112.

Caron, S., Pham, Q.-C., and Nakamura, Y. (2017). ZMP Support Areas for Multicontact
Mobility Under Frictional Constraints. IEEE Transactions on Robotics, 33(1):67–80.

Carpentier, J., Tonneau, S., Naveau, M., Stasse, O., and Mansard, N. (2016). A versatile
and efficient pattern generator for generalized legged locomotion. In Robotics and
Automation (ICRA), 2016 IEEE International Conference on, pages 3555–3561.
IEEE.

Catalano, M. G., Frizza, I., Morandi, C., Grioli, G., Ayusawa, K., Ito, T., and Venture,
G. (2020). HRP-4 walks on Soft Feet. IEEE Robotics and Automation Letters, pages
1–1.

Chachuat, B. (2007). Nonlinear and Dynamic Optimization: From Theory to Practice.

Chiaverini, S., Siciliano, B., and Villani, L. (1994). Force/position regulation of
compliant robot manipulators. IEEE Transactions on Automatic Control, 39(3):647–
652.

Choi, Y., Kim, D., Oh, Y., and You, B.-j. J. (2007). On the Walking Control for
Humanoid Robot Based on Kinematic Resolution of CoM Jacobian With Embedd
ed Motion. Proceedings of the 2006 IEEE International Conference on Robotics and
Automation, 23(6):1285–1293.

Cognetti, M., De Simone, D., Lanari, L., and Oriolo, G. (2016). Real-time planning
and execution of evasive motions for a humanoid robot. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pages 4200–4206. IEEE.

Colman, G. and Wells, J. (2006). On the Use of RLS with Covariance Reset in Tracking
Scenarios with Discontinuities. In 2006 Canadian Conference on Electrical and
Computer Engineering, pages 693–696. IEEE.

Dafarra, S., Nava, G., Charbonneau, M., Guedelha, N., Andradel, F., Traversaro,
S., Fiorio, L., Romano, F., Nori, F., Metta, G., and Pucci, D. (2018). A Control
Architecture with Online Predictive Planning for Position and Torque Controlled
Walking of Humanoid Robots. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1–9. IEEE.

Dafarra, S., Romano, F., and Nori, F. (2016). Torque-controlled stepping-strategy
push recovery: Design and implementation on the iCub humanoid robot. In 2016
IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages
152–157. IEEE.

REFERENCES 217

Dafarra, S., Romualdi, G., Metta, G., and Pucci, D. (2020). Whole-Body Walking
Generation using Contact Parametrization: A Non-Linear Trajectory Optimization
Approach. Proceedings - IEEE International Conference on Robotics and Automation,
pages 1511–1517.

Dafarra, S., Romualdi, G., and Pucci, D. (2022). Dynamic Complementary Conditions
and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion. IEEE
Transactions on Robotics.

Dai, H., Valenzuela, A., and Tedrake, R. (2014). Whole-body motion planning with
centroidal dynamics and full kinematics. In 2014 IEEE-RAS International Conference
on Humanoid Robots, volume 2015-Febru, pages 295–302. IEEE, IEEE Computer
Society.

Dantec, E., Budhiraja, R., Roig, A., Lembono, T., Saurel, G., Stasse, O., Fernbach,
P., Tonneau, S., Vijayakumar, S., Calinon, S., Taix, M., and Mansard, N. (2021).
Whole Body Model Predictive Control with a Memory of Motion: Experiments on a
Torque-Controlled Talos. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 8202–8208. IEEE.

Dantec, E., Taix, M., and Mansard, N. (2022). First Order Approximation of Model
Predictive Control Solutions for High Frequency Feedback. IEEE Robotics and
Automation Letters, 7(2):4448–4455.

Darvish, K., Tirupachuri, Y., Romualdi, G., Rapetti, L., Ferigo, D., Chavez, F. J. A.,
and Pucci, D. (2019). Whole-Body Geometric Retargeting for Humanoid Robots. In
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids),
pages 679–686. IEEE.

Dean-Leon, E., Guadarrama-Olvera, J. R., Bergner, F., and Cheng, G. (2019). Whole-
Body Active Compliance Control for Humanoid Robots with Robot Skin. In 2019
International Conference on Robotics and Automation (ICRA), pages 5404–5410.
IEEE.

Deits, R. and Tedrake, R. (2015). Footstep planning on uneven terrain with mixed-
integer convex optimization. In IEEE-RAS International Conference on Humanoid
Robots, volume 2015-Febru, pages 279–286.

Del Prete, A., Mansard, N., Ramos, O. E., Stasse, O., and Nori, F. (2016). Implementing
Torque Control with High-Ratio Gear Boxes and Without Joint-Torque Sensors.
International Journal of Humanoid Robotics, 13(01):1550044.

Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G., and Kim, S. (2018). Dynamic
Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1–9. IEEE.

Diedam, H., Dimitrov, D., Wieber, P.-B., Mombaur, K., and Diehl, M. (2008). Online
walking gait generation with adaptive foot positioning through Linear Model Predic-
tive control. In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1121–1126. IEEE, IEEE.

REFERENCES 218

Diehl, M., Bock, H. G., Diedam, H., and Wieber, P.-B. (2006). Fast direct multiple
shooting algorithms for optimal robot control. In Fast motions in biomechanics and
robotics, pages 65–93. Springer Berlin Heidelberg.

Diehl, M., Ferreau, H. J., and Haverbeke, N. (2009). Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation. In Nonlinear model predictive
control, pages 391–417. Springer.

Dreyfus, S. (2002). Richard Bellman on the Birth of Dynamic Programming. Operations
Research, 50(1):48–51.

Dubrovin, B. A., Fomenko, A. T., and Novikov, S. P. (1984). Modern Geometry —
Methods and Applications, volume 93. Springer New York, New York, NY.

Elobaid, M., Hu, Y., Romualdi, G., Dafarra, S., Babic, J., and Pucci, D. (2020a).
Telexistence and Teleoperation for Walking Humanoid Robots. pages 1106–1121.

Elobaid, M., Mattioni, M., Monaco, S., and Normand-Cyrot, D. (2019). On uncon-
strained MPC through multirate sampling. IFAC-PapersOnLine, 52(16):388–393.

Elobaid, M., Mattioni, M., Monaco, S., and Normand-Cyrot, D. (2020b). Sampled-data
tracking under model predictive control and multi-rate planning. IFAC-PapersOnLine,
53(2):3620–3625.

Englsberger, J., Koolen, T., Bertrand, S., Pratt, J., Ott, C., and Albu-Schaffer, A.
(2014). Trajectory generation for continuous leg forces during double support and
heel-to-toe shift based on divergent component of motion. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 4022–4029. IEEE.

Englsberger, J., Mesesan, G., Ott, C., and Albu-Schaffer, A. (2018a). DCM-Based
Gait Generation for Walking on Moving Support Surfaces. In 2018 IEEE-RAS 18th
International Conference on Humanoid Robots (Humanoids), pages 1–8. IEEE.

Englsberger, J., Mesesan, G., Werner, A., and Ott, C. (2018b). Torque-based dynamic
walking - A long way from simulation to experiment. IEEE International Conference
on Robotics and Automation (ICRA), pages 440–447.

Englsberger, J., Ott, C., and Albu-Schaffer, A. (2013). Three-dimensional bipedal walk-
ing control using Divergent Component of Motion. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2600–2607. IEEE.

Englsberger, J., Ott, C., and Albu-Schaffer, A. (2015a). Three-Dimensional Bipedal
Walking Control Based on Divergent Component of Motion. IEEE Transactions on
Robotics, 31(2):355–368.

Englsberger, J., Ott, C., Roa, M. A., Albu-Schäffer, A., and Hirzinger, G. (2011).
Bipedal walking control based on capture point dynamics. In IEEE International
Conference on Intelligent Robots and Systems, pages 4420–4427.

Englsberger, J., Werner, A., Ott, C., Henze, B., Roa, M. A., Garofalo, G., Burger, R.,
Beyer, A., Eiberger, O., Schmid, K., and Albu-Schäffer, A. (2015b). Overview of the
torque-controlled humanoid robot TORO. IEEE-RAS International Conference on
Humanoid Robots, 2015-February:916–923.

REFERENCES 219

Fahmi, S., Focchi, M., Radulescu, A., Fink, G., Barasuol, V., and Semini, C. (2020).
STANCE: Locomotion Adaptation Over Soft Terrain. IEEE Transactions on Robotics,
36(2):443–457.

Fahmi, S., Mastalli, C., Focchi, M., and Semini, C. (2019). Passive Whole-Body Control
for Quadruped Robots: Experimental Validation Over Challenging Terrain. IEEE
Robotics and Automation Letters, 4(3):2553–2560.

Falcon, E., Laroche, C., Fauve, S., and Coste, C. (1998). Behavior of one inelastic ball
bouncing repeatedly off the ground. The European Physical Journal B, 3(1):45–57.

Faragasso, A., Oriolo, G., Paolillo, A., and Vendittelli, M. (2013). Vision-based corridor
navigation for humanoid robots. In Proceedings - IEEE International Conference on
Robotics and Automation.

Featherstone, R. (2014). Rigid Body Dynamics Algorithms. Springer, Boston, MA.

Feng, S., Whitman, E., Xinjilefu, X., and Atkeson, C. G. (2015a). Optimization-based
Full Body Control for the DARPA Robotics Challenge. Journal of Field Robotics,
32(2):293–312.

Feng, S., Xinjilefu, X., Atkeson, C. G., and Kim, J. (2015b). Optimization based
controller design and implementation for the Atlas robot in the DARPA Robotics
Challenge Finals. In IEEE-RAS International Conference on Humanoid Robots.

Feng, S., Xinjilefu, X., Atkeson, C. G., and Kim, J. (2016). Robust dynamic walking
using online foot step optimization. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), volume 2016-November, pages 5373–5378.
IEEE.

Fernbach, P., Tonneau, S., and Taix, M. (2018). CROC: Convex Resolution of
Centroidal Dynamics Trajectories to Provide a Feasibility Criterion for the Multi
Contact Planning Problem. IEEE International Conference on Intelligent Robots
and Systems, pages 8367–8373.

Flavigne, D., Pettrée, J., Mombaur, K., Laumond, J.-P. P., others, Truong, T. V. A.,
Flavigne, D., Pettré, J., Mombaur, K., and Laumond, J.-P. P. (2010). Reactive
synthesizing of human locomotion combining nonholonomic and holonomic behaviors.
In Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and
EMBS International Conference on, pages 632–637. IEEE.

Flayols, T., Prete, A., Khadiv, M., Mansard, N., Flayols, T., Prete, A., Khadiv, M.,
Mansard, N., Balancing, L. R., Flayols, T., Prete, A. D., Khadiv, M., Mansard,
N., and Righetti, L. (2020). Balancing Legged Robots on Visco-Elastic Contacts.
Technical report.

Fukuda, K. and Prodon, A. (1995). Double description method revisited. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 1120:91–111.

REFERENCES 220

Fumagalli, M., Ivaldi, S., Randazzo, M., Natale, L., Metta, G., Sandini, G., and
Nori, F. (2012). Force feedback exploiting tactile and proximal force/torque sensing.
Autonomous Robots, 33(4):381–398.

García, C. E., Prett, D. M., and Morari, M. (1989). Model predictive control: Theory
and practice—A survey. Automatica, 25(3):335–348.

Gilardi, G. and Sharf, I. (2002). Literature survey of contact dynamics modelling.
Mechanism and Machine Theory.

Goldenberg, A., Benhabib, B., and Fenton, R. (1985). A complete generalized solution
to the inverse kinematics of robots. IEEE Journal on Robotics and Automation,
1(1):14–20.

Griffin, R. J. and Leonessa, A. (2016). Model predictive control for dynamic footstep
adjustment using the divergent component of motion. In Proceedings - IEEE
International Conference on Robotics and Automation.

Griffin, R. J., Leonessa, A., and Asbeck, A. (2016). Disturbance compensation and
step optimization for push recovery. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5385–5390. IEEE.

Griffin, R. J., Wiedebach, G., Bertrand, S., Leonessa, A., and Pratt, J. (2017). Walking
stabilization using step timing and location adjustment on the humanoid robot,
Atlas. IEEE International Conference on Intelligent Robots and Systems, 2017-
September:667–673.

Gross, E. (2016). On the Bellman’s principle of optimality. Physica A: Statistical
Mechanics and its Applications, 462:217–221.

Guedelha, N., Kuppuswamy, N., Traversaro, S., and Nori, F. (2016). Self-calibration
of joint offsets for humanoid robots using accelerometer measurements. In 2016
IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages
1233–1238. IEEE.

Guo, Y., Zhang, M., Dong, H., and Zhao, M. (2021). Fast Online Planning for Bipedal
Locomotion via Centroidal Model Predictive Gait Synthesis. IEEE Robotics and
Automation Letters, 6(4):6450–6457.

Gurobi Optimization, L. (2022). Gurobi Optimizer Reference Manual.

Hajikarimi, P. and Moghadas Nejad, F. (2021). Mechanical models of viscoelasticity.
In Applications of Viscoelasticity, pages 27–61. Elsevier.

Hall, B. C. (2015). Lie Groups, Lie Algebras, and Representations.

Handford, M. L. and Srinivasan, M. (2014). Sideways walking: preferred is slow, slow
is optimal, and optimal is expensive. Biology letters, 10(1):20131006.

Hayes, M. H. (1996). Statistical Digital Signal Processing and Modeling. John Wiley &
Sons, Inc, 605 Third Ave. New York, NYUnited States, 1st edition.

REFERENCES 221

Henze, B., Roa, M. A., and Ott, C. (2016). Passivity-based whole-body balancing for
torque-controlled humanoid robots in multi-contact scenarios. International Journal
of Robotics Research.

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., and Righetti, L.
(2016). Momentum control with hierarchical inverse dynamics on a torque-controlled
humanoid. Autonomous Robots.

Herzog, A., Rotella, N., Schaal, S., and Righetti, L. (2015). Trajectory generation for
multi-contact momentum control. In 2015 IEEE-RAS 15th International Conference
on Humanoid Robots (Humanoids), volume 2015-Decem, pages 874–880. IEEE.

Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. (1998). The development of
Honda humanoid robot. In Proceedings. 1998 IEEE International Conference on
Robotics and Automation (Cat. No.98CH36146), pages 1321–1326. IEEE.

Hof, A. L. (2008). The ’extrapolated center of mass’ concept suggests a simple control
of balance in walking. Human Movement Science.

Hogg, J. and Scott, J. A. (2011). HSL_MA97 : a bit-compatible multifrontal code for
sparse symmetric systems. Rutherford Appleton Laboratory Technical Reports.

Holm, D. D. (2008). Geometric Mechanics Part II: Rotating, Translating and Rolling.
IMPERIAL COLLEGE PRESS.

Hopkins, M. A., Hong, D. W., and Leonessa, A. (2014). Humanoid locomotion on
uneven terrain using the time-varying divergent component of motion. In 2014 IEEE-
RAS International Conference on Humanoid Robots, volume 2015-Febru, pages
266–272. IEEE.

Hopkins, M. A., Hong, D. W., and Leonessa, A. (2015). Compliant locomotion using
whole-body control and Divergent Component of Motion tracking. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 5726–5733.
IEEE.

Howe, R. (1983). Very Basic Lie Theory. The American Mathematical Monthly,
90(9):600–623.

Hunt, K. H. and Crossley, F. R. E. (1975). Coefficient of Restitution Interpreted as
Damping in Vibroimpact. Journal of Applied Mechanics, 42(2):440–445.

Huynh, D. Q. (2009). Metrics for 3D rotations: Comparison and analysis. Journal of
Mathematical Imaging and Vision.

Ibanez, A., Bidaud, P., and Padois, V. (2014). Emergence of humanoid walking behav-
iors from mixed-integer model predictive control. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4014–4021. IEEE.

IEC 61158-1 (2019). Industrial communication networks - Fieldbus specifications -
Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series.

REFERENCES 222

Jeong, H., Lee, I., Oh, J., Lee, K. K., and Oh, J. H. (2019). A Robust Walking
Controller Based on Online Optimization of Ankle, Hip, and Stepping Strategies.
IEEE Transactions on Robotics, 35(6):1367–1386.

Joe, H.-M. and Oh, J.-H. (2018). Balance recovery through model predictive control
based on capture point dynamics for biped walking robot. Robotics and Autonomous
Systems, 105:1–10.

Johnson, K. L. (1985). Contact Mechanics. Cambridge University Press.

Kajita, S., Hirukawa, H., Harada, K., and Yokoi, K. (2014). Introduction to Humanoid
Robotics, volume 101. Springer Berlin Heidelberg, Berlin, Heidelberg.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and
Hirukawa, H. (2003). Biped walking pattern generation by using preview control
of zero-moment point. In 2003 IEEE International Conference on Robotics and
Automation (Cat. No.03CH37422), volume 2, pages 1620–1626. IEEE.

Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., and Hirukawa, H. (2001). The 3D linear
inverted pendulum mode: a simple modeling for a biped walking pattern generation.
In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat.
No.01CH37180), volume 1, pages 239–246. IEEE.

Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro,
F., and Yokoi, K. (2010). Biped walking stabilization based on linear inverted
pendulum tracking. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4489–4496. IEEE.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1):35–45.

Kamioka, T., Kaneko, H., Takenaka, T., and Yoshiike, T. (2018). Simultaneous
Optimization of ZMP and Footsteps Based on the Analytical Solution of Divergent
Component of Motion. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1763–1770. IEEE.

Kaneko, K., Kaminaga, H., Sakaguchi, T., Kajita, S., Morisawa, M., Kumagai, I., and
Kanehiro, F. (2019). Humanoid Robot HRP-5P: An Electrically Actuated Humanoid
Robot With High-Power and Wide-Range Joints. IEEE Robotics and Automation
Letters, 4(2):1431–1438.

Kaneko, K., Kanehiro, F., Morisawa, M., Akachi, K., Miyamori, G., Hayashi, A., and
Kanehira, N. (2011). Humanoid robot HRP-4 - Humanoid robotics platform with
lightweight and slim body. In IEEE International Conference on Intelligent Robots
and Systems.

Kanoun, O., Lamiraux, F., and Wieber, P.-B. (2011). Kinematic Control of Redundant
Manipulators: Generalizing the Task-Priority Framework to Inequality Task. IEEE
Transactions on Robotics, 27(4):785–792.

REFERENCES 223

Khadiv, M., Herzog, A., Moosavian, S. A. A., and Righetti, L. (2016). Step timing
adjustment: A step toward generating robust gaits. In 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), pages 35–42. IEEE.

Khudher, D. and Powell, R. (2016). Quadratic programming for inverse kinematics
control of a hexapod robot with inequality constraints. In 2016 International
Conference on Robotics: Current Trends and Future Challenges (RCTFC), pages
1–5. IEEE.

Kirillov, A. (2008). An Introduction to Lie Groups and Lie Algebras. Cambridge
University Press, Cambridge.

Kirk, D. E. (1970). Optimal control theory: an introduction. Courier Corporation.

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154.
IEEE.

Koolen, T., de Boer, T., Rebula, J., Goswami, A., and Pratt, J. (2012). Capturability-
based analysis and control of legged locomotion, Part 1: Theory and application to
three simple gait models. The International Journal of Robotics Research, 31(9):1094–
1113.

Koolen, T., Posa, M., and Tedrake, R. (2016). Balance control using center of mass
height variation: Limitations imposed by unilateral contact. In 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids), pages 8–15. IEEE.

Krause, M., Englsberger, J., Wieber, P. B., and Ott, C. (2012). Stabilization of the
Capture Point dynamics for bipedal walking based on model predictive control. In
IFAC Proceedings Volumes (IFAC-PapersOnline), pages 165–171.

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen,
T., Marion, P., and Tedrake, R. (2016). Optimization-based locomotion planning,
estimation, and control design for the atlas humanoid robot. Autonomous Robots,
40(3):429–455.

Lankarani, H. M. and Nikravesh, P. E. (1990). A contact force model with hysteresis
damping for impact analysis of multibody systems. Journal of Mechanical Design,
Transactions of the ASME, 112(3):369–376.

Lee, T., Leok, M., and McClamroch, N. H. (2018). Global Formulations of Lagrangian
and Hamiltonian Dynamics on Manifolds. Springer International Publishing, Cham.

Lee, Y., Hwang, S., and Park, J. (2016). Balancing of humanoid robot using contact
force/moment control by task-oriented whole body control framework. Autonomous
Robots, 40(3):457–472.

Leng, X., Piao, S., Chang, L., He, Z., and Zhu, Z. (2020). Universal Walking Control
Framework of Biped Robot Based on Dynamic Model and Quadratic Programming.
Complexity, 2020:1–13.

REFERENCES 224

Li, C., Ding, Y., and Park, H. W. (2020). Centroidal-momentum-based trajectory
generation for legged locomotion. Mechatronics, 68:102364.

Li, Q., Takanishi, A., and Kato, I. (1998). Learning control for a biped walking
robot with a trunk. In Proceedings of 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’93), pages 1771–1777. IEEE.

Li, Q., Yu, Z., Chen, X., Zhou, Q., Zhang, W., Meng, L., and Huang, Q. (2019).
Contact Force/Torque Control Based on Viscoelastic Model for Stable Bipedal
Walking on Indefinite Uneven Terrain. IEEE Transactions on Automation Science
and Engineering, 16(4):1627–1639.

Liberzon, D. (2012). Calculus of Variations and Optimal Control Theory. Princeton
University Press.

Liu, J., Cai, S., Chen, W., and Chen, I.-M. (2017). Minimum-jerk trajectory generation
and global optimal control for permanent magnet spherical actuator. In 2017 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pages 2249–2254.
IEEE.

Ljung, L. (1999). System Identification: Theory for the User.

Lynch, K. M. and Park, F. C. (2017). Modern Robotics: Mechanics, Planning, and
Control. Cambridge University Press, 40 W. 20 St. New York, NYUnited States, 1st
edition.

Marhefka, D. and Orin, D. (1999). A compliant contact model with nonlinear damp-
ing for simulation of robotic systems. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 29(6):566–572.

Marsden, J. E. and Ratiu, T. S. (2010). Introduction to Mechanics and Symmetry: A
Basic Exposition of Classical Mechanical Systems. Springer Publishing Company,
Incorporated.

Mason, M. T. and Wang, Y. (1988). On the inconsistency of rigid-body frictional
planar mechanics. In Proceedings. 1988 IEEE International Conference on Robotics
and Automation, pages 524–528. IEEE Comput. Soc. Press.

Mason, S., Rotella, N., Schaal, S., and Righetti, L. (2018). An MPC Walking Framework
with External Contact Forces. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 1785–1790. IEEE.

Mayne, D. Q. and Michalska, H. (1990). Receding horizon control of nonlinear systems.
IEEE Transactions on Automatic Control, 35(7):814–824.

Mesesan, G., Englsberger, J., Garofalo, G., Ott, C., and Albu-Schaffer, A. (2019).
Dynamic Walking on Compliant and Uneven Terrain using DCM and Passivity-
based Whole-body Control. In 2019 IEEE-RAS 19th International Conference on
Humanoid Robots (Humanoids), pages 25–32. IEEE.

REFERENCES 225

Mesesan, G., Englsberger, J., and Ott, C. (2021). Online DCM Trajectory Adaptation
for Push and Stumble Recovery during Humanoid Locomotion. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 12780–12786.
IEEE.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: Yet Another Robot Platform.
International Journal of Advanced Robotic Systems, 3(1):8.

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten,
C., Rosander, K., Lopes, M., Santos-Victor, J., Bernardino, A., and Montesano,
L. (2010). The iCub humanoid robot: An open-systems platform for research in
cognitive development. Neural Networks.

Michaelis, W. (1980). Lie coalgebras. Advances in Mathematics, 38(1):1–54.

Mingo Hoffman, E., Traversaro, S., Rocchi, A., Ferrati, M., Settimi, A., Romano, F.,
Natale, L., Bicchi, A., Nori, F., and Tsagarakis, N. G. (2014). Yarp Based Plugins
for Gazebo Simulator. pages 333–346. Springer, Cham.

Mombaur, K., Truong, A., and Laumond, J. P. (2010). From human to humanoid
locomotion-an inverse optimal control approach. Autonomous Robots.

Morin, P. and Samson, C. (2008). Handbook of Robotics. chapter Motion con, pages
799–826. Springer.

Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. (1953). The double
description method. Contributions to the Theory of Games, 2(28):51–73.

Murray, R. M., Sastry, S. S., and Zexiang, L. (1994). A Mathematical Introduction to
Robotic Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edition.

Nakaoka, S., Hattori, S., Kanehiro, F., Kajita, S., and Hirukawa, H. (2007). Constraint-
based dynamics simulator for humanoid robots with shock absorbing mechanisms. In
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3641–3647. IEEE.

Natale, L., Bartolozzi, C., Pucci, D., Wykowska, A., and Metta, G. (2017). iCub: The
not-yet-finished story of building a robot child. Science Robotics, 2(13):eaaq1026.

Nava, G., Romano, F., Nori, F., and Pucci, D. (2016). Stability Analysis and Design of
Momentum-based Controllers for Humanoid Robots. Intelligent Robots and Systems
(IROS) 2016. IEEE International Conference on.

Naveau, M., Kudruss, M., Stasse, O., Kirches, C., Mombaur, K., and Soueres, P. (2017).
A Reactive Walking Pattern Generator Based on Nonlinear Model Predictive Control.
IEEE Robotics and Automation Letters, 2(1):10–17.

Needham, T. (2021). Visual Differential Geometry and Forms. Princeton University
Press.

Nguyen, Q., Da, X., Grizzle, J. W., and Sreenath, K. (2020). Dynamic Walking on
Stepping Stones with Gait Library and Control Barrier Functions. pages 384–399.

REFERENCES 226

Nori, F., Traversaro, S., Eljaik, J., Romano, F., Del Prete, A., and Pucci, D. (2015).
iCub Whole-Body Control through Force Regulation on Rigid Non-Coplanar Contacts.
Frontiers in Robotics and AI, 2.

Olfati-Saber, R. (2001). Nonlinear Control of Underactuated Mechanical Systems with
Application to Robotics and Aerospace Vehicles. PhD thesis, Cambridge, MA, USA.

Orin, D. and Goswami, A. (2008). Centroidal Momentum Matrix of a humanoid robot:
Structure and properties. In 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 653–659. IEEE.

Orin, D., Goswami, A., and Lee, S.-H. (2013). Centroidal dynamics of a humanoid
robot. Autonomous Robots.

Park, F. C. and Ravani, B. (1997). Smooth invariant interpolation of rotations. ACM
Transactions on Graphics, 16(3):277–295.

Parmiggiani, A., Maggiali, M., Natale, L., Nori, F., Schmitz, A., Tsagarakis, N., Santos-
Victor, J., Becchi, F., Sandini, G., and Metta, G. (2012). The Design of the iCub
Humanoid Robot. International Journal of Humanoid Robotics, 9.

Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). An experimental
evaluation of a novel minimum-jerk Cartesian controller for humanoid robots. In
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS
2010 - Conference Proceedings.

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., and Righetti, L. (2018). On Time
Optimization of Centroidal Momentum Dynamics. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 5776–5782. IEEE.

Ponton, B., Herzog, A., Schaal, S., and Righetti, L. (2016). A convex model of humanoid
momentum dynamics for multi-contact motion generation. In 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), pages 842–849. IEEE.

Pontriagin, L. S. L. S. (1962). The mathematical theory of optimal processes. page
360.

Popovic, M. B., Goswami, A., and Herr, H. (2005). Ground reference points in legged
locomotion: Definitions, biological trajectories and control implications. International
Journal of Robotics Research, 24(12):1013–1032.

Poulakakis, I. and Grizzle, J. (2009). The Spring Loaded Inverted Pendulum as the
Hybrid Zero Dynamics of an Asymmetric Hopper. IEEE Transactions on Automatic
Control, 54(8):1779–1793.

Poulakakis, I., Smith, J. A., and Buehler, M. (2005). Modeling and experiments
of untethered quadrupedal running with a bounding gait: The scout II robot.
International Journal of Robotics Research.

Pratt, J., Carff, J., Drakunov, S., and Goswami, A. (2006). Capture Point: A Step
toward Humanoid Push Recovery. In 2006 6th IEEE-RAS International Conference
on Humanoid Robots, pages 200–207. IEEE.

REFERENCES 227

Pratt, J., Koolen, T., de Boer, T., Rebula, J., Cotton, S., Carff, J., Johnson, M., and
Neuhaus, P. (2012). Capturability-based analysis and control of legged locomotion,
Part 2: Application to M2V2, a lower-body humanoid. The International Journal of
Robotics Research, 31(10):1117–1133.

Pressley, A. (2010). Elementary Differential Geometry. Springer London, London.

Pucci, D., Marchetti, L., and Morin, P. (2013). Nonlinear control of unicycle-like robots
for person following. In IEEE International Conference on Intelligent Robots and
Systems.

Qin, S. J. and Badgwell, T. A. (2000). An Overview of Nonlinear Model Predictive
Control Applications. Nonlinear Model Predictive Control, pages 369–392.

Raibert, M. H. and Craig, J. J. (1981). Hybrid Position/Force Control of Manipulators.
Journal of Dynamic Systems, Measurement, and Control, 103(2):126–133.

Ramadoss, P., Romualdi, G., Dafarra, S., Andrade Chavez, F. J., Traversaro, S., and
Pucci, D. (2021). DILIGENT-KIO: A Proprioceptive Base Estimator for Humanoid
Robots using Extended Kalman Filtering on Matrix Lie Groups. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 2904–2910.
IEEE.

Ramuzat, N., Boria, S., and Stasse, O. (2022). Passive Inverse Dynamics Control Using
a Global Energy Tank for Torque-Controlled Humanoid Robots in Multi-Contact.
IEEE Robotics and Automation Letters, 7(2):2787–2794.

Ramuzat, N., Buondonno, G., Boria, S., and Stasse, O. (2021). Comparison of Position
and Torque Whole-Body Control Schemes on the Humanoid Robot TALOS. In 2021
20th International Conference on Advanced Robotics (ICAR), pages 785–792. IEEE.

Rapetti, L., Tirupachuri, Y., Darvish, K., Dafarra, S., Nava, G., Latella, C., and
Pucci, D. (2020). Model-Based Real-Time Motion Tracking Using Dynamical Inverse
Kinematics. Algorithms, 13(10):266.

Romano, F., Nava, G., Azad, M., Camernik, J., Dafarra, S., Dermy, O., Latella,
C., Lazzaroni, M., Lober, R., Lorenzini, M., Pucci, D., Sigaud, O., Traversaro, S.,
Babic, J., Ivaldi, S., Mistry, M., Padois, V., and Nori, F. (2018). The CoDyCo
Project Achievements and Beyond: Toward Human Aware Whole-Body Controllers
for Physical Human Robot Interaction. IEEE Robotics and Automation Letters,
3(1):516–523.

Romualdi, G., Dafarra, S., Hu, Y., and Pucci, D. (2018). A Benchmarking of DCM
Based Architectures for Position and Velocity Controlled Walking of Humanoid
Robots. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids), pages 1–9. IEEE.

Romualdi, G., Dafarra, S., Hu, Y., Ramadoss, P., Chavez, F. J. A., Traversaro, S., and
Pucci, D. (2020). A Benchmarking of DCM-Based Architectures for Position, Velocity
and Torque-Controlled Humanoid Robots. International Journal of Humanoid
Robotics, 17(01):1950034.

REFERENCES 228

Romualdi, G., Dafarra, S., L’Erario, G., Sorrentino, I., Traversaro, S., and Pucci, D.
(2022a). Online Non-linear Centroidal MPC for Humanoid Robot Locomotion with
Step Adjustment. In 2022 International Conference on Robotics and Automation
(ICRA), pages 10412–10419. IEEE.

Romualdi, G., Dafarra, S., and Pucci, D. (2021). Modeling of Visco-Elastic Environ-
ments for Humanoid Robot Motion Control. IEEE Robotics and Automation Letters,
6(3):4289–4296.

Romualdi, G., Villa, N., Dafarra, S., Pucci, D., and Stasse, O. (2022b). Control and
Estimation of Link Flexibility for Humanoid Robot Motion Control. IEEE-RAS
International Conference on Humanoid Robots (Humanoids) (Submitted).

Scianca, N., Cognetti, M., De Simone, D., Lanari, L., and Oriolo, G. (2016). Intrinsically
stable MPC for humanoid gait generation. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pages 601–606. IEEE.

Scianca, N., De Simone, D., Lanari, L., and Oriolo, G. (2020). MPC for Humanoid Gait
Generation: Stability and Feasibility. IEEE Transactions on Robotics, 36(4):1171–
1188.

Sciavicco, L. and Siciliano, B. (1988). A Solution Algorithm to the Inverse Kinematic
Problem for Redundant Manipulators. IEEE Journal on Robotics and Automation.

Selig, J. M. (2007). Curves of stationary acceleration in SE(3). IMA Journal of
Mathematical Control and Information, 24(1):95–113.

Seyde, T., Shrivastava, A., Englsberger, J., Bertrand, S., Pratt, J., and Griffin, R. J.
(2018). Inclusion of angular momentum during planning for capture point based
walking. Proceedings - IEEE International Conference on Robotics and Automation,
pages 1791–1798.

Shafiee, M., Romualdi, G., Dafarra, S., Chavez, F. J. A., and Pucci, D. (2019). Online
dcm trajectory generation for push recovery of torque-controlled humanoid robots.
IEEE-RAS International Conference on Humanoid Robots, 2019-October:671–678.

Shafiee-Ashtiani, M., Yousefi-Koma, A., Mirjalili, R., Maleki, H., and Karimi, M.
(2017a). Push Recovery of a Position-Controlled Humanoid Robot Based on Capture
Point Feedback Control. In 2017 5th RSI International Conference on Robotics and
Mechatronics (ICRoM), pages 126–131. IEEE.

Shafiee-Ashtiani, M., Yousefi-Koma, A., and Shariat-Panahi, M. (2017b). Robust
bipedal locomotion control based on model predictive control and divergent compo-
nent of motion. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 3505–3510. IEEE.

Shahriar, M. S., Ahmed, M. A., Rahman, M. I., and Khan, A. I. (2013). Comparison
of MPC and conventional control methods for the stability enhancement of UPFC
connected SMIB system. In 2013 2nd International Conference on Advances in
Electrical Engineering (ICAEE), pages 223–228. IEEE.

REFERENCES 229

Sheridan, T. B. (2016). Human–Robot Interaction. Human Factors: The Journal of
the Human Factors and Ergonomics Society, 58(4):525–532.

Shih, C.-L. (1996). The Dynamics and Control of a Biped Walking Robot With
Seven Degrees of Freedom. Journal of Dynamic Systems, Measurement, and Control,
118(4):683–690.

Solà, J., Deray, J., and Atchuthan, D. (2018). A micro Lie theory for state estimation
in robotics.

Spenko, M., Buerger, S., and Iagnemma, K. (2018). The DARPA Robotics Challenge
Finals: Humanoid Robots To The Rescue, volume 121 of Springer Tracts in Advanced
Robotics. Springer International Publishing, Cham.

Stasse, O., Flayols, T., Budhiraja, R., Giraud-Esclasse, K., Carpentier, J., Mirabel, J.,
Del Prete, A., Soueres, P., Mansard, N., Lamiraux, F., Laumond, J. P., Marchionni,
L., Tome, H., and Ferro, F. (2017). TALOS: A new humanoid research platform tar-
geted for industrial applications. IEEE-RAS International Conference on Humanoid
Robots, pages 689–695.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2018a). OSQP: An
Operator Splitting Solver for Quadratic Programs. 2018 UKACC 12th International
Conference on Control, CONTROL 2018, page 339.

Stellato, B., Naik, V. V., Bemporad, A., Goulart, P., and Boyd, S. (2018b). Embedded
Mixed-Integer Quadratic optimization Using the OSQP Solver. In 2018 European
Control Conference (ECC), pages 1536–1541. IEEE.

Stephens, B. J. and Atkeson, C. G. (2010a). Dynamic Balance Force Control for com-
pliant humanoid robots. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 1248–1255.

Stephens, B. J. and Atkeson, C. G. (2010b). Push Recovery by stepping for humanoid
robots with force controlled joints. In 2010 10th IEEE-RAS International Conference
on Humanoid Robots, pages 52–59. IEEE.

Stronge, W. J. (1991). Unraveling paradoxical theories for rigid body collisions. Journal
of Applied Mechanics, Transactions ASME.

Sygulla, F. and Rixen, D. (2020). A force-control scheme for biped
robots to walk over uneven terrain including partial footholds:.
https://doi.org/10.1177/1729881419897472, 17(1).

Takanishi, A. (2019). Historical Perspective of Humanoid Robot Research in Asia. In
Humanoid Robotics: A Reference, pages 35–52. Springer Netherlands, Dordrecht.

Takenaka, T., Matsumoto, T., and Yoshiike, T. (2009). Real time motion generation and
control for biped robot -1st report: Walking gait pattern generation-.
In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1084–1091. IEEE.

REFERENCES 230

Tawiah, I. and Song, Y. (2021). Optimal control of nonlinear systems with dynamic
programming. International Journal of Nonlinear Sciences and Numerical Simulation,
22(2):145–168.

Tirupachuri, Y., Nava, G., Latella, C., Ferigo, D., Rapetti, L., Tagliapietra, L., Nori,
F., and Pucci, D. (2020). Towards Partner-Aware Humanoid Robot Control Under
Physical Interactions. pages 1073–1092.

Torricelli, D., Gonzalez-Vargas, J., Veneman, J. F., Mombaur, K., Tsagarakis, N., del
Ama, A. J., Gil-Agudo, A., Moreno, J. C., and Pons, J. L. (2015). Benchmarking
Bipedal Locomotion: A Unified Scheme for Humanoids, Wearable Robots, and
Humans. IEEE Robotics & Automation Magazine, 22(3):103–115.

Traversaro, S. (2017). Modelling, Estimation and Identification of Humanoid Robots
Dynamics. PhD thesis.

Traversaro, S., Pucci, D., and Nori, F. (2017). A Unified View of the Equations of
Motion used for Control Design of Humanoid Robots. On line.

Truong, T. V. A., Flavigne, D., Pettré, J., Mombaur, K., and Laumond, J. P. (2010).
Reactive synthesizing of human locomotion combining nonholonomic and holonomic
behaviors. In 2010 3rd IEEE RAS and EMBS International Conference on Biomedical
Robotics and Biomechatronics, BioRob 2010.

Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc, V. G.,
Noorden, J., Muratore, L., Margan, A., Cardellino, A., Natale, L., Mingo Hoffman,
E., Dallali, H., Kashiri, N., Malzahn, J., Lee, J., Kryczka, P., Kanoulas, D., Garabini,
M., Catalano, M., Ferrati, M., Varricchio, V., Pallottino, L., Pavan, C., Bicchi, A.,
Settimi, A., Rocchi, A., and Ajoudani, A. (2017). WALK-MAN: A High-Performance
Humanoid Platform for Realistic Environments. Journal of Field Robotics.

Tsagarakis, N. G., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti,
L., Santos-Victor, J., Ijspeert, A. J., Carrozza, M. C., and Caldwell, D. G. (2007).
ICub: The design and realization of an open humanoid platform for cognitive and
neuroscience research. Advanced Robotics.

Tu, L. W. (2011). An Introduction to Manifolds. Springer New York, New York, NY.

Viceconte, P. M., Camoriano, R., Romualdi, G., Ferigo, D., Dafarra, S., Traversaro, S.,
Oriolo, G., Rosasco, L., and Pucci, D. (2022). ADHERENT: Learning Human-like
Trajectory Generators for Whole-body Control of Humanoid Robots. IEEE Robotics
and Automation Letters, 7(2):2779–2786.

Villa, N. A., Fernbach, P., Naveau, M., Saurel, G., Dantec, E., Mansard, N., and Stasse,
O. (2022). Torque Controlled Locomotion of a Biped Robot with Link Flexibility. In
IEEE-RAS International Conference on Humanoid Robots (Humanoids) [Submitted].
IEEE.

Vukobratović, M., Borovac, B., Vukobratov, M., and Borovac, B. (2004). Zero - Moment
Point — Thirty Five Years of Its Life. International Journal of Humanoid Robotics,
1(1):157–173.

REFERENCES 231

Vukobratovic, M. and Juricic, D. (1969). Contribution to the Synthesis of Biped Gait.
IEEE Transactions on Biomedical Engineering, BME-16(1):1–6.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57.

Warner, F. W. (1971). Foundations of Differentiable Manifolds and Lie Groups.
Graduate Texts in Mathematics. Springer.

Whittaker, E. T. and McCrae, S. W. (1988). A Treatise on the Analytical Dynamics
of Particles and Rigid Bodies. Cambridge University Press.

Wieber, P.-b. (2006). Trajectory Free Linear Model Predictive Control for Stable Walk-
ing in the Presence of Strong Perturbations. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots, pages 137–142. IEEE, IEEE.

Winkler, A. W., Bellicoso, C. D., Hutter, M., and Buchli, J. (2018). Gait and
Trajectory Optimization for Legged Systems Through Phase-Based End-Effector
Parameterization. IEEE Robotics and Automation Letters, 3(3):1560–1567.

Žefran, M., Kumar, V., and Croke, C. (1998). On the generation of smooth three-
dimensional rigid body motions. IEEE Transactions on Robotics and Automation,
14(4):576–589.

Žefran, M., Kumar, V., and Croke, C. (1999). Metrics and Connections for Rigid-Body
Kinematics. The International Journal of Robotics Research, 18(2):242–1.

Appendix A

Lie Group: a Survival Kit

The appendix aims to present some basic concepts of the Lie groups theory. The Lie
group is a mathematical abstract entity that dates back to the nineteenth century
when mathematician Sophus Lie established the idea of continuous transformation
groups. Many years later, its effect has expanded over a wide range of scientific and
technological fields. Lie groups, on the other hand, are very abstract creations for
the great majority of roboticists, making them difficult to grasp and employ. This
chapter will take an utilitaristic approach to describe such frameworks, emphasizing
intuitive comprehension of their meaning and functions above the breadth and depth
of arguments and proofs. Once the Lie groups’ formalism has been introduced, we
present two examples of Lie groups often exploited in robotics, namely, the group of
the rotation matrices and the group of the roto-translation matrices.

The reader who wants a more thorough and rigorous understanding of the Lie
groups theory should consult the extensive literature, where it is worth mentioning
[Solà et al., 2018] from which part of this appendix took inspiration. Other complete
and more rigorous dissertations are [Hall, 2015; Howe, 1983; Kirillov, 2008; Warner,
1971].

A.1 Matrix Lie Group

A group (G, ◦) is a set G, with a composition operation ◦, of which the following axioms
are satisfied:

• Closure under ◦: For every elements X, Y belonging to G, the composition of
X and Y belongs to the group, i.e., ∀X, Y ∈ G, X ◦ Y ∈ G;

Lie Group: a Survival Kit 233

τ∧

exp (τ∧) Lie algebra: g

Lie group: G

E

X

log(X)

Figure A.1 Lie group and the corresponding Lie algebra as tangent space at identity.

• Existence of the Identity element: There exists an element E ∈ G such that,
for every X ∈ G, E ◦X = X ◦ E = X. This element is unique and is called the
identity element of the group;

• Existence of the inverse element: For each X ∈ G, there exists an element
X−1 ∈ G, such that X−1 ◦X = X ◦X−1 = E , where e is the identity element.
For each X, the element X−1 is unique and is called the inverse of X;

• Associativity: For X, Y, Z ∈ G, X ◦ (Y ◦ Z) = (X ◦ Y) ◦ Z.

We define a Smooth Manifold as a topological space that locally resembles a linear
space. We now define a Lie group as a group that is also a finite-dimensional real
smooth manifold, in which the group operations of composition ◦ and inversion ·−1 are
smooth maps. Let GL(n,R) denote the group of n× n invertible matrices with entries
in R. Any topologically closed subgroup 1 of GL(n,R) is a Lie group. Lie groups of this
sort are called matrix Lie group.

1A subgroup G ⊂ GL(n,R) is said topologically closed if given a sequence of X1, X2, · · · ∈ G such
that Xk converges in GL(n,R), then limk→∞ Xk ∈ G.

Lie Group: a Survival Kit 234

In this manuscript we consider only Lie groups that are also matrix Lie groups,
hereafter, to simplify the notation, we will remove the matrix prefix, and we indicate a
matrix Lie group as a Lie group.

A.2 Action of a Lie Group

Given a Lie group G and a set V , we introduce the action of X ∈ G on v ∈ V as

· : G × V −→ V, (A.2.1)

The action · must satisfy the following properties:

• Compatibility: For X, Y ∈ G and v ∈ V , (X ◦ Y) · v = X · (Y · v);

• Identity: For each v ∈ V , E · v = v, where E is the identity element of the Lie
group G.

To provide the reader with a better understanding, group action is the ability of a
Lie group to transform an element of other sets. For example, in the case of SO(3),
the action of a rotation matrix on a 3D vector results in a coordinate transformation
– see Section 2.1. On the other hand, in SE(3), the group action converts a vector
expressed in a frame into another frame, where the two frames have a different origin
and orientation – see Equation (2.2.3).

A.3 Tangent space and Lie algebra

The tangent space at X ∈ G, is the space TXG of all the tangent vectors of all the
curves passing through X. Since the Lie group is a smooth manifold, the tangent
space is defined for every element of G and its structure is an invariant of the group.
As a consequence, it is possible to associate with each Lie group a particular tangent
space called tangent space at the identity TEG, or simply Lie algebra of G and usually
denoted with g. The Lie algebra g is a vector space together with a bilinear operation
called Lie bracket:

[., .] : g× g −→ g, (A.3.1)

obeying the following axioms:

Lie Group: a Survival Kit 235

• Bilinearity For all scalars a, b ∈ R and for all elements x, y, z ∈ g, the following
identity is verified [ax+ by, z] = a [x, z] + b [y, z]

• Alternativity For each x ∈ g, [x, x] = 0

• Jacobi identity Given x, y, z ∈ g the following identity is verified [x, [y, z]] +
[y, [z, x]] + [z, [x, y]] = 0.

It is worth recalling that, using the bilinearity and the alternativity axioms, it is possible
to prove that the Lie bracket is an anticommutative operator, i.e., [x, y] = − [y, x]. For
a matrix Lie group, the elements in g are matrices, consequently given x, y ∈ g, it is
possible to prove that the Lie bracket is always the commutator of matrices [Hall, 2015,
Definition 2.19], i.e.,

[x, y] = xy − yx. (A.3.2)

The elements of a Lie algebra g can be uniquely identified with vectors in Rm where
m is the number of degrees of freedom of G. In fact, since g is a vector space, every
element τ∧ ∈ g can be expressed as a linear combination of some base elements Ei,
where Ei are called the generators of g. It is now possible to define two isomorphisms,
commonly denoted hat and vee such that:

hat : Rm −→ g τ∧ =
m∑

i=1
αiEi (A.3.3a)

vee : g −→ Rm (τ∧)∨ =
m∑

i=1
αiei (A.3.3b)

where ei represents a vector of the canonical base Rm, that is, ei = E∨
i and Ei = e∧

i .
As already mentioned in Section 2.4, the angular velocity belongs to the Lie algebra

of SO(3), denoted with so(3). While the spatial velocity is an element of se(3), that is,
the Lie algebra of SE(3).

A.4 Co-tangent space and Lie co-algebra

Given a Lie group G, let X ∈ G and TXG the tangent space at X. Then we define the
co-tangent space at X as the dual space2 of TXG, and denoted with T ∗

XG. Given a Lie
group G and its associated Lie algebra g, we define the Lie co-algebra g∗ as the dual

2Given a vector space V having a basis e1, . . . , en. The dual space of V , denoted V ∗, has the same
dimension of V and is a vector space. The basis of V ∗ is the set of linear functions µ1, . . . , µn that
satisfy µi(ej) = δij , where δij is the Kronecker delta.

Lie Group: a Survival Kit 236

space of the tangent space at the identity, i.e., g∗ = T ∗
EX [Michaelis, 1980]. The Lie

co-algebra g∗ is a vector space and its element can be identified with the vectors in
Rm, with m equal to the number of degrees of freedom of G. Indeed, given a set of
generators of g∗, denoted as E∗

i , it is possible to define two isomorphisms, called hat
and vee such that:

hat : Rm −→ g∗ w∧ =
m∑

i=1
αiE

∗
i (A.4.1a)

vee : g∗ −→ Rm (w∧)∨ =
m∑

i=1
αiei (A.4.1b)

where w∧ ∈ g∗ and ei represent a vector of the canonical base Rm, i.e ei = E∗∨
i and

E∗
i = e∧

i .
Given τ∧ ∈ g and w∧ ∈ g∗, the dual pairing is the map

⟨., .⟩ : g× g∗ −→ R ⟨τ∧, w∧⟩ = w∧ (τ∧) . (A.4.2)

We usually say that the dual vector w∧ acts on the tangent vector τ∧. For matrix Lie
groups, both elements in g and g∗ are matrices, and the dual pairing between the Lie
algebra and its dual is equivalent to

⟨τ∧, w∧⟩ = tr (τ∧w∧) . (A.4.3)

Since both g and g∗ are isomorphic to Rn, given τ∧ ∈ g and w∧ ∈ g∗, the dual pairing
map can be applied directly to the elements w ∈ Rn and τ ∈ Rn. In this context, the
dual pairing is equivalent to the scalar product as:

⟨τ, w⟩ = τ⊤w. (A.4.4)

Applying the Lie group formalism, we notice that the 6D spatial force is an element
of Lie co-algebra se(3)∗ [Holm, 2008, Chapter 6] – see Section 2.2.2.

Lie Group: a Survival Kit 237

A.5 Left and right trivialization

Given an element of a Lie group X ∈ G, we denote the left and the right translation
on G as [Tu, 2011, Chapter 4]

LX : G −→ G
RX : G −→ G

(A.5.1)

If G is a matrix Lie group, LX and RX are just standard multiplication such that,
given Y ∈ G, LXY = XY and RXY = Y X. It is worth noting that LX and RX are
smooth maps whose inverses L−1

X = LX−1 and R−1
X = RX−1 are also smooth, i.e., LX

and RX are diffeomorphisms.
Given an element of the Lie Group X ∈ G, the left and right translations (A.5.1)

induce an isomorphism of tangent spaces, denoted as LX∗ : g −→ TXG and RX∗ : g −→
TXG named left and right trivialization. Given X ∈ G and a curve Y (t) ∈ G such that
Y (0) = E and d

d t
Y
∣∣∣
0

= τ∧ ∈ g, LX∗ and RX∗ are defined as [Tu, 2011, Chapter 4]:

LX∗τ∧ = d
d tLXY (t)

∣∣∣∣∣
t=0

= LXτ
∧, (A.5.2a)

RX∗τ∧ = d
d tRXY (t)

∣∣∣∣∣
t=0

= RXτ
∧. (A.5.2b)

For matrix Lie groups, both elements in G and in g are matrices such that we may
multiply them together using matrix multiplication. Consequently, LX∗τ∧ and RX∗τ∧

are simply given by:

LX∗τ∧ = Xτ∧, (A.5.3a)
RX∗τ∧ = τ∧X. (A.5.3b)

In conclusion, given any element τ∧ ∈ g, the left and right induced tangent maps LX∗

and RX∗ describe the tangent space TXG at a point X ∈ G.
In light of the above, it is now clear why we defined the left and right trivialized

velocity in Section 2.1.1 and 2.2.1. Indeed, given AHB ∈ SE(3) and left trivialized
spatial velocity Bv∧

A,B ∈ se(3). The right trivialization map results in an element of the
tangent space at AHB, i.e., AḢB = LAHB

Bv∧
A,B = AHB

Bv∧
A,B ∈ TAHB

SE(3). Similar
considerations hold also for the right trivialized velocity.

Lie Group: a Survival Kit 238

A.6 Exponential and logarithmic map

Given a tangent increment τ := vt ∈ Rm as velocity v ∈ Rm per time t ∈ R, the
exponential map, is defined as

exp : g −→ G X = exp(τ∧); (A.6.1)

where X belongs to G. The inverse of the exponential map is the logarithmic map and
it is defined as:

log : G −→ g τ∧ = log(X). (A.6.2)

. Given an element on the Lie group X ∈ G, an element on the Lie algebra τ ∈ g and
two real scalars s, t ∈ R, the following properties are satisfied:

• exp((t+ s)τ∧) = exp(tτ∧) exp(sτ∧);

• exp(tτ∧) = exp(τ∧)t;

• exp(Xτ∧X−1) = X exp(τ∧)X−1.

To further simplify the notation, we introduce the capitalized Exp and Log as

x = Exp(τ) := exp(τ∧) τ = Log(x) := log(x)∨. (A.6.3)

A.7 The adjoint and the co-adjoint representation
of a Lie group

We now introduce the adjoint representation of a Lie group G at X ∈ G on an element
of the Lie algebra τ∧ ∈ g as

AdX : G × g −→ g AdX(τ∧) := Xτ∧X−1. (A.7.1)

In other words, given X ∈ G and a vector Xτ∧ ∈ g the adjont representation AdX

applied to Xτ∧ returns a vector in the Lie algebra Eτ∧ ∈ g such that the left and right
trivialization of Xτ∧ and Eτ∧ returns the same element in TXG, i.e., XXτ∧ = Eτ∧X ∈
TXG. Figure A.2 shows the effect of the adjoint representation on an element of a Lie
algebra.

Lie Group: a Survival Kit 239

Lie algebra: g

Lie group: G

E

X

Eτ∧

Xτ∧

AdX

X Xτ∧

Eτ∧ X

Φ(t)
Ẋ

TXG

Figure A.2 The Adjoint representation.

The adjoint representation is a linear operator. Indeed, given an element X ∈ G,
two elements of the Lie algebra τ∧, γ∧ ∈ g and two real numbers α, θ ∈ R we have:

AdX(ατ∧ + θγ∧) = (ατ∧ + θγ∧)X−1 (A.7.2a)
= αXτ∧X−1 + θXγ∧X−1 (A.7.2b)
= αAdX(τ∧) + θAdX(γ∧). (A.7.2c)

Since the adjoint representation is a linear transformation and the elements of the
tangent space are isomorphic to the vectors in Rn, i.e., g ∼= Rn, we can define a matrix
called adjoint matrix of a Lie group G, denoted with AdX , that maps the Cartesian
tangent vectors Eτ and Xτ and writes as

AdX : Rm −→ Rm; Eτ = AdX
Xτ. (A.7.3)

Lie Group: a Survival Kit 240

Considering the SE(3) group, the adjoint representation aims to map a left trivialized
spatial velocity into a right trivialized one.

We now introduce the co-adjoint representation of a Lie group G at X ∈ G on an
element of the Lie co-algebra w∧ ∈ g∗ by means of the dual pairing map ⟨., .⟩ as [Holm,
2008, Chapter 4]:

Ad∗
X : G × g∗ −→ g∗ ⟨Ad∗

X(w∧), τ∧⟩ := ⟨w∧,AdX−1(τ∧)⟩, (A.7.4)

where τ∧ ∈ g. It is worth noting that for a matrix Lie group the co-adjoint representa-
tion has a closed form and it is equal to

Ad∗
X(w∧) = X−1w∧X. (A.7.5)

Indeed using the trace as dual pairing between g and g∗

⟨w∧,AdX−1(τ∧)⟩ = tr
(
w∧X−1τ∧X

)
(A.7.6a)

= tr
(
w∧Xτ∧X−1

)
(A.7.6b)

= tr
(
X−1w∧Xτ∧

)
(A.7.6c)

= ⟨X−1w∧X, τ∧⟩ (A.7.6d)
= ⟨Ad∗

X(w∧), τ∧⟩. (A.7.6e)

Similarly to the adjoint representation, the co-adjoint representation is also a linear
transformation, so we can introduce a matrix called co-adjoint matrix of a Lie group
G, denoted with Ad∗

X , as

Ad∗
X : Rm −→ Rm; ⟨Ad∗

X w, τ⟩ := ⟨w,AdX−1 τ⟩. (A.7.7)

There exists a relation between the co-adjoint matrix Ad∗
X and adjoint matrix AdX ,

indeed, by applying the scalar product as the dual pairing between Rn ∼= g and Rn ∼= g∗

we obtain

⟨Ad∗
X w, τ⟩ = w⊤ Ad∗⊤

X τ (A.7.8a)
= ⟨w,Ad∗⊤

X τ⟩ (A.7.8b)
= ⟨w,AdX−1 τ⟩, (A.7.8c)

Lie Group: a Survival Kit 241

where Ad∗
X is given by

Ad∗
X = Ad⊤

X−1 . (A.7.9)

Given an element of the SE(3) group, e.g., AHB ∈ SE(3), the co-adjoint representa-
tion expresses a left trivialized spatial force as a function of a right trivialized one, and
it writes as:

Af∧ = Ad∗
AHB

(Bf∧) = AH−1
B Bf∧AHB. (A.7.10)

A.8 The adjoint and the co-adjoint representation
of the Lie algebra

We now introduce the adjoint representation of the Lie algebra g at x∧ ∈ g on an
element of the Lie algebra y∧ ∈ g as

adx∧ : g× g −→ g adx∧(y∧) := d
d t Adexp(tx∧) y

∧
∣∣∣
t=0

. (A.8.1)

To give the reader a better understanding we may imagine having an adjoint rep-
resentation of the Lie group AdX(t) such that Eτ∧(t) = AdX(t)

(
Xτ∧

)
where X(t) is

represented by the element of the Lie algebra, i.e., X(t) = exp(tx∧), and we aim to
compute the time derivative of Eτ∧(t) at t = 0, i.e., d

d t
Eτ∧(t)

∣∣∣
0

= adx∧

(
Xτ∧

)
.

It is worth noting that adjoint representation of the Lie algebra on itself, adx∧(y∧)
is given the Lie bracket – Equation (A.3.2). In fact, expanding (A.8.1) we obtain

adx∧(y∧) = d
d t Adexp(tx∧) y

∧
∣∣∣∣∣
t=0

(A.8.2a)

= d
d t exp(tx∧)y∧ exp(−tx∧)

∣∣∣∣∣
t=0

(A.8.2b)

= [x∧ exp(tx∧)y∧ exp(−tx∧)− exp(tx∧)y∧x∧ exp(−tx∧)]|t=0 (A.8.2c)
= x∧y∧ − y∧x∧ (A.8.2d)
= [x∧, y∧] . (A.8.2e)

Since the adjoint representation of the Lie algebra on itself is a linear transformation,
i.e., the Lie bracket is a linear map, we can define a matrix called adjoint matrix of the
Lie algebra, denoted with adx∧ that maps the time derivative of the Cartesian tangent

Lie Group: a Survival Kit 242

vectors Eτ∧ and Xτ∧ and writes as:

adx∧ : Rm −→ Rm; E τ̇ = adx∧
Xτ. (A.8.3)

In this context, it is also important to remark on an important result of Lie algebra
theory, known as Adjoint motion equation [Holm, 2008, Proposition 4.2.2]. Let a
smooth path X(t) ∈ G and τ∧(t) ∈ g be a path in the Lie algebra, then the following
relation holds [Holm, 2008, Proposition 4.2.2]:

d
d t

{
AdX(t) τ

∧(t)
}

= AdX(t)

[
d
d tτ

∧(t) + adξ(t) τ
∧(t)

]
. (A.8.4)

where ξ(t) = X(t)−1Ẋ(t) ∈ g – i.e., the left trivialization. Equation (A.8.4) can be
expressed in matrix form as:

d
d t

{
AdX(t) τ(t)

}
= AdX(t)

[
d
d tτ(t) + adξ(t) τ(t)

]
. (A.8.5)

In the case of the roto-translation group (A.8.5) results in the Equation (2.2.29),
where adξ(t) is given by ξ(t)×.

We now introduce the adjoint representation of a Lie algebra g at x∧ ∈ g on an
element of the Lie co-algebra w∧ ∈ g∗ by means of the dual pairing map ⟨., .⟩:

ad∗
x∧ : g× g∗ −→ g∗ ⟨ad∗

x∧(w∧), τ∧⟩ := ⟨w∧,− adx∧(τ∧)⟩, (A.8.6)

where τ∧ ∈ g.
It is worth noting that for a matrix, the Lie group ad∗

x∧(w∧) has a closed form and
it is equal to

ad∗
x∧(w∧) = x∧w∧ − w∧x∧. (A.8.7)

Lie Group: a Survival Kit 243

Indeed using the trace as dual pairing between g and g∗

⟨w∧,− adx∧(τ∧)⟩ = tr (w∧ (τ∧x∧ − x∧τ∧)) (A.8.8a)
= tr (w∧τ∧x∧ − w∧x∧τ∧) (A.8.8b)
= tr (w∧τ∧x∧)− tr (w∧x∧τ∧) (A.8.8c)
= tr (x∧w∧τ∧)− tr (w∧x∧τ∧) (A.8.8d)
= tr ((x∧w∧ − w∧x∧) τ∧) (A.8.8e)
= ⟨x∧w∧ − w∧x∧, τ∧⟩ (A.8.8f)
= ⟨ad∗

x∧(w∧), τ∧⟩. (A.8.8g)

Similarly to adx∧, ad∗
x∧ is a linear transformation, so we can introduce a matrix called

co-adjoint matrix of the lie algebra ad∗
x∧ , defined as

ad∗
x∧ : Rm −→ Rm; ⟨ad∗

x∧ w, τ⟩ := ⟨w,− adx∧ τ⟩. (A.8.9)

In the case of matrix Lie group, there exists a relation between ad∗
x∧ and adx∧ . Indeed,

applying the scalar product as the dual pairing between Rn ∼= g and Rn ∼= g∗, we
obtain the following:

⟨ad∗
x∧∗ w, τ⟩ = w⊤ ad∗⊤

x∧ τ (A.8.10a)
= ⟨w, ad∗⊤

x∧ τ⟩ (A.8.10b)
= ⟨w,− adx∧ τ⟩, (A.8.10c)

where ad∗
x∧ is given by

ad∗
x∧ = − ad⊤

x∧ . (A.8.11)

In this context, it is also important to recall an important result of the Lie algebra
theory, known as co-adjoint motion equation [Holm, 2008, Proposition 4.2.5]. Let
a smooth path X(t) ∈ G and µ∧(t) ∈ g∗ be a path in the Lie co-algebra, then the
following relation holds [Holm, 2008, Proposition 4.2.5]:

d
d t

{
Ad∗

X(t) µ
∧(t)

}
= AdX(t)

[
d
d tµ

∧(t) + ad∗
ξ(t) µ

∧(t)
]
. (A.8.12)

Lie Group: a Survival Kit 244

where ξ(t) = X(t)−1Ẋ(t) ∈ g – i.e., the left trivialization. Equation (A.8.12) can be
expressed in matrix form as

d
d t

{
Ad∗

X(t) µ(t)
}

= Ad∗
X(t)

[
d
d tµ(t) + ad∗

ξ(t) µ(t)
]
. (A.8.13)

In SE(3) Equation (A.8.13) results in Equation (2.2.31), where ad∗
ξ(t) is given by

ξ(t)×∗.

A.9 Eurel-Poincaré equations

The Euler-Poincaré Equations are the generalization of the Euler-Lagrange equations
to a system whose configuration space is a Lie group.

Given a system Σ whose state belongs to a matrix Lie group G and let a left-
trivialized Lagrangian function L : G × g −→ R. Let P be the set of smooth paths
X : [t0, tf] −→ G such that X(t0) = X0 and X(tf) = Xf . We aim to compute the
trajectory X(t) so that it is a stationary point of the action functional:

G =
∫ tf

t0
L(X, ξ∧) d t. (A.9.1)

Applying Hamilton’s Variational Principle [Lee et al., 2018] on Equation (A.9.1) we
can conclude that a path X ∈ P is a stationary point of J if and only if

d
d t
∂L
∂ξ

+ ad∗
ξ

∂L
∂ξ

= X−1 ∂L
∂X

(A.9.2)

where ξ∧ = X−1Ẋ is the left trivialization of the Lie algebra.
Equation (A.9.2) plays a crucial role in the definition of the dynamics of a rigid

body system. Indeed, considering a SE(3) group and the Langrangian function (2.3.2)
we notice that (A.9.2) is equivalent to (2.3.4) with

ad∗
Bv∧

I,B
= BvI,B×∗,

∂L
∂BvI,B

= BMB
BvI,B,

IH−1
B

∂L
∂IHB

= −BMB

IR⊤
Bg

03×1

 .
(A.9.3)

Appendix B

Proof of Lemma 1

Let us now consider a rigid body that makes a contact with a visco-elastic surface, and
we assume that:

1. there exists an inertial frame I;

2. there exists a frame B rigidly attached to the body, and we denote oB the origin
of the frame and [B] its orientation;

3. there exists a contact domain Ω ∈ R3, we denote with Bx a point in the contact
surface expressed in the the frame B;

4. the characteristics of the environment are isotropic;

5. while in contact, the rigid body moves with a 6D velocity, denoted as B[I]v such
that

B[I]v =
 I ȯB

IωI,B

 ; (B.0.1)

6. ∀x ∈ Ω, there exists a continuous pure force distribution that depends on the
point Ix and its velocity I ẋ expressed in the inertial frame, as in (8.1.6)

ρ
(

Ix, I ẋ
)

= k
(

I x̄− Ix
)
− b I ẋ, (B.0.2)

where x̄ ∈ X̄ .

We now introduce u and v as the coordinates, in the body frame B, of the point belongs
to the contact surface Bx, such as

Bx =
[
u v 0

]⊤
. (B.0.3)

Proof of Lemma 1 246

The position of the contact point in the inertial frame, denoted as Ix, is given by
applying the homogeneous transformation IHB to Bx as

Ix = IHB
Bx = oB + IRB

[
u v 0

]⊤
, (B.0.4)

The contact point velocity I ẋ is given by time differentiating Equation (B.0.4):

I ẋ = ȯB +
(

IωI,B×
)

IRB

[
u v 0

]⊤
, (B.0.5)

Using the hypothesis of rigid-body, x̄ can be computed as:

I x̄ = ōB + IR̄B

[
u v 0

]⊤
. (B.0.6)

Here, ōB and IR̄B are the position and rotation of the body frame associated with a
null force in the case of zero velocity.

Combining (B.0.2) with (B.0.4), (B.0.5) and (B.0.6), the force acting on a point
lying on the contact surface becomes:

ρ = k
{
ōB − oB +

(I
R̄B − IRB

) [
u v 0

]⊤}
(B.0.7a)

− b
{
ȯB +

(
IωI,B×

)
IRB

[
u v 0

]⊤}
. (B.0.7b)

where (B.0.7a) is the force generated by the spring and (B.0.7b) is the one produced
by the damper. To facilitate the process of finding the solutions to the integrals (8.1.4),
let us recall that given a double integral of a function g(x, y), a variable change of the
form (B.0.4), (B.0.5) and (B.0.6) yields

∫∫
g(x, y) dx d y =

∫∫
g (x(u, v), y(u, v)) | det(J)| du d v, (B.0.8)

where J is the Jacobian of the variable transformation, i.e.

J =

∂x1

∂u

∂x1

∂v

∂x2

∂u

∂x2

∂v

 . (B.0.9)

Here, k operator extracts the k element of a vector, that is, xk = e⊤
k x.

Proof of Lemma 1 247

Given the variable change defined in (B.0.4) and writing IRB as the horizontal
concatenation of three vectors i, j, n. It is straightforward to verify that | det(J)| is
equal to

| det(J)| = |i1j2 − i2j1| = |n⊤e3| = |e⊤
3

IRBe3|. (B.0.10)

B.1 Compliant contact force computation

Equations (B.0.8), (B.0.7) and (B.0.10) can be used to evaluate the total force applied
from the environment to a generic contact surface as

If = k|e⊤
3

IRBe3|
∫∫ {

ōB − oB +
(I
R̄B − IRB

) [
u v 0

]⊤}
du d v (B.1.1a)

− b|e⊤
3

IRBe3|
∫∫ {

ȯB +
(

IωI,B×
)

IRB

[
u v 0

]⊤}
du d v. (B.1.1b)

If Ω is represented by a rectangle with a length l and a width w, the contact force
If in (B.1.1) writes as

If = k|e⊤
3

IRBe3|
l/2∫

−l/2

w/2∫
−w/2

ōB − oB du d v (B.1.2a)

+ k|e⊤
3

IRBe3|
l/2∫

−l/2

w/2∫
−w/2

(I
R̄B − IRB

) [
u v 0

]⊤
du d v (B.1.2b)

− b|e⊤
3

IRBe3|
l/2∫

−l/2

w/2∫
−w/2

ȯB du d v (B.1.2c)

− b|e⊤
3

IRBe3|
l/2∫

−l/2

w/2∫
−w/2

(
IωI,B×

)
IRB

[
u v 0

]⊤
du d v. (B.1.2d)

In Equation (B.1.2) we can recognize two common structures. The integrand functions
in (B.1.2) and (B.1.3) are constants. On the other hand, the integrands in (B.1.3) and
(B.1.3) are odd functions:

Γ ∼ ōB − oB ∼ ȯB, (B.1.3a)
Ξ(u, v) ∼

(I
R̄B − IRB

) [
u v 0

]⊤
∼
(

IωI,B×
)

IRB

[
u v 0

]⊤
. (B.1.3b)

Proof of Lemma 1 248

The integral of the constant term Γ in the rectangle contact domain is given by

l/2∫
−l/2

w/2∫
−w/2

Γ du d v = Γ
l/2∫

−l/2

w/2∫
−w/2

du d v = lwΓ, (B.1.4)

on the other hand, since the integration domain is symmetric, the integral of the odd
term Ξ(u, v) is equal to the zero vector. To conclude, the equivalent contact force If

writes as (8.1.7a)
If = k(ōB − oB)− bȯB. (B.1.5)

B.2 Compliant contact torque computation

The torque about the origin of B, oB produced by the force distribution ρ is:

σoB
(u, v) =

(
IRB

[
u v 0

]⊤)
× ρ(u, v), (B.2.1)

Applying (B.0.8), the integral of (B.2.1) on a rectangular contact surface leads to

B[I]µ = k|e⊤
3

IRBe3|
l/2∫

−l/2

w/2∫
−w/2

IRB

u

v

0

× (ōB − oB) du d v (B.2.2a)

+ k|e⊤
3

IRBe3|
l/2∫

−l/2

w/2∫
−w/2

IRB

u

v

0

× (I

R̄B − IRB

)
u

v

0

 du d v (B.2.2b)

− b|e⊤
3

IRBe3|
l/2∫

−l/2

w/2∫
−w/2

IRB

u

v

0

× ȯB du d v (B.2.2c)

− b|e⊤
3

IRBe3|
l/2∫

−l/2

w/2∫
−w/2

IRB

u

v

0

× (IωI,B×

)
IRB

u

v

0

 du d v.(B.2.2d)

In Equation (B.2.2) we can recognize two common structures. The integral terms in
(B.2.2a) and (B.2.2c) are linear odd functions on the integral variables u and v. On

Proof of Lemma 1 249

the other hand the integrands in (B.2.2b) and (B.2.2d) can be rewritten as
IRB

u

v

0

×A

u

v

0

 , (B.2.3)

where A is equal to A = I
R̄B − IRB in Equation (B.2.2b), and A =

(
IωI,B×

)
IRB in

Equation (B.2.2d).
We notice that since the integration domain is symmetric, the integral of the odd

terms (B.2.2a) and (B.2.2c) is equal to zero.
We now aim to compute the following integral

l/2∫
−l/2

w/2∫
−w/2

IRB

u

v

0

×A

u

v

0

 du d v. (B.2.4)

Let us rewrite the rotation matrix IRB and the matrix A as the column concatenation
of the following vectors

IRB =
[
i j k

]
A =

[
a b c

]
. (B.2.5)

Then the integrand function (B.2.3) can be rewritten asIRB

u

v

0

×A

u

v

0

 = (ui+ vj)× (ua+ vb) (B.2.6a)

= u2(i× a) + v2(j × b) (B.2.6b)
+ uv[(i× b) + (j × a)]. (B.2.6c)

Proof of Lemma 1 250

The term (B.2.6c) is an odd function, and as a consequence the integral in the symmetric
domain is equal to zero. On the other hand, the integral (B.2.6b) is given by

l/2∫
−l/2

w/2∫
−w/2

IRB

u

v

0

×A

u

v

0

 du d v = (B.2.7a)

l/2∫
−l/2

w/2∫
−w/2

u2(i× a) + v2(j × b) du d v = (B.2.7b)

lw

12{l
2(i× a) + w2(j × b)} = (B.2.7c)

lw

12
{
l2
(

IRBe1
)
× (Ae1) + w2

(
IRBe2

)
× (Ae2)

}
. (B.2.7d)

Recalling that A is equal to A = I
R̄B − IRB in Equation (B.2.2b), and A =(

IωI,B×
)

IRB in Equation (B.2.2d), the solution of the integral (B.2.2) becomes

B[I]µ = klw

12 |e
⊤
3

IRBe3|
{
l2
(

IRBe1
)
×
[(I

R̄B − IRB

)
e1
]

+ (B.2.8a)

w2
(

IRBe2
)
×
[(I

R̄B − IRB

)
e2
]}

+ (B.2.8b)

− blw

12 |e
⊤
3

IRBe3|
{
l2
(

IRBe1
)
×
[((

IωI,B×
)

IRB

)
e1
]

+ (B.2.8c)

w2
(

IRBe2
)
×
[((

IωI,B×
)

IRB

)
e2
]}
. (B.2.8d)

By applying some basic rules of the cross product, Equation (B.2.8) leads to (8.1.7b).

Appendix C

Proof of Corollary 1

Let If and B[I]µ the contact force and torque given by (8.1.7a) and (8.1.7b), respectively.
Assume that I

R̄B = I3 and IRB is approximated with its first order of the Taylor
expansion, i.e., IRB = I3 + Θ×, with Θ ∈ R3. Assume that Θ represents the classical
roll-pitch-yaw sequence, namely IRB(Θ) = Rz(Θ3)Ry(Θ2)Rx(Θ1). Then, we want to
prove the state of Corollary 1.

By substituting the first-order Taylor expansion IRB = I3 + Θ× into Equa-
tion (8.1.7a), we obtain the following:

If ≈ lw|e⊤
3 (I3 + Θ×) e3| [k(ōB − oB)− bȯB] (C.0.1a)

= lw [k(ōB − oB)− bȯB] , (C.0.1b)

where the last term is equivalent to Equation (8.1.9a) with Kl = lwkI3 and Bl = lwbI3.
To prove Equation (8.1.9b) we first set I

R̄B = I3

B[I]µ = lw

12 |e
⊤
3

IRBe3| (C.0.2a){
l2k(IRBe1)× e1 (C.0.2b)

+l2b(IRBe1)× (IRBe1)× IωI,B (C.0.2c)
+w2k(IRBe2)× e2 (C.0.2d)
+w2b(IRBe2)× (IRBe2)× IωI,B

}
. (C.0.2e)

We now analyze the contribution of each term in Equation (C.0.2). By substituting
the first order Taylor expansion IRB = I3 + Θ× in Equation (C.0.2b) and applying

Proof of Corollary 1 252

the vector triple product 1, we obtain

l2k(IRBe1)× e1 = l2k[(I3 + Θ×)e1]× e1 (C.0.3a)
= l2k[e1 × e1 + (Θ× e1)× e1] (C.0.3b)
= l2k[(e⊤

1 Θ)e1 −Θ] (C.0.3c)
= l2k

[
0 −Θ2 −Θ3

]⊤
. (C.0.3d)

The very same approach is also valid for (C.0.2d):

w2k(IRBe2)× e2 =w2k[(I3 + Θ×)e2]× e2 (C.0.4a)
=w2k[e2 × e2 + (Θ× e2)× e2] (C.0.4b)
=w2k[(e⊤

2 Θ)e2 −Θ] (C.0.4c)
=w2k

[
−Θ1 0 −Θ3

]⊤
. (C.0.4d)

Let us now compute the small-angle approximation for the angular velocity IωI,B. We
recall that it is always possible to compute the angular velocity from the rate of change
of the Euler parametrization. In the case of roll-pitch-yaw parametrization we have:

IωI,B =
[
Rz(Θ3)Ry(Θ2)e1 Rz(Θ3)e2 e3

]
Θ̇. (C.0.5)

We now evaluate the first-order approximation of the angular velocity as a function of
the Euler angle rate of change:

1Given three vectors a, b, c ∈ R3, the following relationship holds:

a× (b× c) =
(
a⊤c

)
b−

(
a⊤b

)
c.

Proof of Corollary 1 253

IωI,B =
[
Rz(Θ3)Ry(Θ2)e1 Rz(Θ3)e2 e3

]
Θ̇ (C.0.6a)

=

cos(Θ2) cos(Θ3) − sin(Θ3) 0
cos(Θ2) sin(Θ3) cos(Θ3) 0
− sin(Θ2) 0 1

 Θ̇ (C.0.6b)

=

− cos(Θ2) cos(Θ3)− 1 − sin(Θ3) 0

cos(Θ2) sin(Θ3) cos(Θ3)− 1 0
− sin(Θ2) 0 0

 Θ̇ + Θ̇ (C.0.6c)

≈

−Θ2

2Θ2
3

2 −Θ3 0
−Θ3 −Θ3

2 0
−Θ2 0 0

 Θ̇ + Θ̇ (C.0.6d)

≈ Θ̇. (C.0.6e)

We can conclude that for small angles, the angular velocity can be approximated to
the rate of change of the Euler angle, i.e. IωI,B ≈ Θ̇.

Considering the angular velocity approximation and substituting the first order
Taylor expansion IRB = I3 + Θ× in the term (C.0.2c), we obtain

(IRBe1)× (IRBe1)× IωI,B =
[
(IRBe1)×

]2 IωI,B (C.0.7a)
≈ {[(I3 + Θ×) e1]×}2 Θ̇ (C.0.7b)

=

0 Θ2 Θ3

−Θ2 0 −1
−Θ3 1 0

2

Θ̇ (C.0.7c)

=

−Θ2

2 −Θ2
3 Θ3 −Θ2

Θ3 −Θ2
2 − 1 −Θ3Θ2

−Θ2 −Θ3Θ2 −Θ2
3 − 1

 Θ̇ (C.0.7d)

≈

0 Θ3 −Θ2

Θ3 −1 0
−Θ2 0 −1

 Θ̇ (C.0.7e)

≈

0 0 0
0 −1 0
0 0 −1

 Θ̇. (C.0.7f)

Proof of Corollary 1 254

Here we neglect all the second-order terms.
The very same approach is also valid for (C.0.2e):

(IRBe2)× (IRBe2)× IωI,B =
[
(IRBe2)×

]2 IωI,B (C.0.8a)
≈ {[(I3 + Θ×) e2]×}2 Θ̇ (C.0.8b)

=

−Θ2

1 − 1 −Θ3 −Θ1Θ3

−Θ3 −Θ2
1 −Θ2

3 Θ1

−Θ1Θ3 Θ1 −Θ2
3 − 1

 Θ̇ (C.0.8c)

≈

−1 −Θ3 0
−Θ3 0 Θ1

0 Θ1 −1

 Θ̇ (C.0.8d)

≈

−1 0 0
0 0 0
0 0 −1

 Θ̇. (C.0.8e)

By substituting (C.0.3) (C.0.7) (C.0.4) and (C.0.2) and remembering that |e⊤
3

IRBe3| ≈
1 for a small rotation we obtain

B[I]µ ≈
lw

12

l2k

0
−Θ2

−Θ3

+ w2k

−Θ1

0
−Θ3

+ l2b

0
−Θ̇2

−Θ̇3

+ w2b

−Θ̇1

0
−Θ̇3

 , (C.0.9)

that is equivalent to Equation (8.1.9b) with

Ka = k
lw

12

w2 0 0
0 l2 0
0 0 l2+w2

 Ba = b
lw

12

w2 0 0
0 l2 0
0 0 l2+w2

 . (C.0.10)

Appendix D

Optimal Trajectory Planning in Rn

This appendix addresses the problem of the optimal trajectory planning in Rn. We
first recall the Hamilton’s Variational Principle method as a solution of two-point
trajectory planning, then we apply the technique to compute a minimum acceleration
and minimum jerk trajectory in Rn.

D.1 Notes on Hamilton’s Variational Principle

Given a fixed initial point x(t0) = x0 ∈ Rn and a final point x(tf) = xf ∈ Rn we aim
to compute the trajectory x(t) such that is a stationary point1 of the action functional:

G =
∫ tf

t0
L
(
x, ẋ, . . . , x(m)

)
d t, (D.1.1)

where L
(
x, ẋ, . . . , x(m)

)
is the Lagrangian function and depends on the trajectory x

and its derivative, here the superscripts (m) denotes the m-order time derivative of
x(t). The optimization problem can be solved by applying Hamilton’s Variational
Principle [Liberzon, 2012]. To do so, we first introduce the concept of variations on Rn

and then we present the Hamilton’s Variational Principle.
Suppose that a curve x : [t0, tf] → Rn describes a trajectory in Rn. We now

introduce the variation of the curve x(t), which is the ϵ-parameterized family of curves
xϵ(t) taking values in Rn, where ϵ ∈ (−c, c) with c > 0, x0(t) = x(t) and the endpoints
are fixed, i.e., xϵ(Ti) = x(Ti) and xϵ(Ti+1) = x(Ti+1). The Taylor expansion of xϵ(t) is

1A stationary point of a differentiable function of one variable is a point on the graph of the
function where the function’s derivative is zero.

Optimal Trajectory Planning in Rn 256

given by
xϵ(t) = x(t) + ϵδx(t) +O

(
ϵ2
)
. (D.1.2)

The i-th order time derivative of (D.1.2) writes as

x(i)
ϵ = x(i) + ϵδx(i) +O

(
ϵ2
)
, (D.1.3)

where for the sake of clarity the explicit dependency on the time is hidden. The
infinitesimal variation of motion δx(i) is given by

δx(i) = d
d ϵx

(i)
ϵ

∣∣∣∣∣
ϵ=0

, (D.1.4)

where the infinitesimal variation satisfies the fixed-endpoint conditions δx(i)(t0) = 0
and δx(i)(tf) = 0 for i ∈ [0,m− 1].

We now introduce the action functional along a variation of a motion Gϵ as

Gϵ =
∫ tf

t0
L
(
xϵ, ẋϵ, . . . , x

(m)
ϵ

)
d t. (D.1.5)

Similarly to what is discussed in Equation (D.1.2), the first-order Taylor expansion of
the Gϵ is given by

Gϵ = G + ϵδG +O
(
ϵ2
)
, (D.1.6)

where the infinitesimal variation of the action functional is given by

δG = d
d ϵGϵ

∣∣∣∣∣
ϵ=0

. (D.1.7)

Hamilton’s principle states that the evolution of a system that minimizes the action
functional (D.1.1) is a stationary point of G. More formally, for all possible variations
xϵ(t) with fixed endpoints, we have

δG = d
d ϵGϵ

∣∣∣∣∣
ϵ=0

= 0. (D.1.8)

Optimal Trajectory Planning in Rn 257

Since the co-domain of x(t), Rn, is a vector space, we determine the action integral by
differentiating Equation (D.1.5) as

δG = d
d ϵGϵ

∣∣∣∣∣
ϵ=0

=
∫ tf

t0

m∑
k=0

〈
∂L
∂x(k) , δx

(k)
〉

d t (D.1.9a)

=
m∑

k=0

∫ tf

t0

〈
∂L
∂x(k) , δx

(k)
〉

d t, (D.1.9b)

where in (D.1.9b) we exploit the fact that the summation set is finite and the integral
converges. Here ⟨., .⟩ is the scalar product operator. By integrating (D.1.9b) by parts,
we obtain

δG=
m∑

k=0

∫ tf

t0

〈
∂L
∂x(k) , δx

(k)
〉

d t (D.1.10a)

=
m∑

k=0

k−1∑
i=0

(−1)i

〈
di

d ti
∂L
∂x(i) , δx

(k−1−i)
〉∣∣∣∣∣

tf

t0

(D.1.10b)

+
m∑

k=0
(−1)k

∫ tf

t0

〈
dk

d tk
∂L
∂x(k) , δx

〉
d t. (D.1.10c)

Using the fact that the infinitesimal variations δx(i) vanish at t0 and tf for i ∈ [0,m−1],
we simplify Equation (D.1.10) as

δG=
m∑

k=0
(−1)k

∫ tf

t0

〈
dk

d tk
∂L
∂x(k) , δx

〉
d t (D.1.11a)

=
∫ tf

t0

〈
m∑

k=0
(−1)k dk

d tk
∂L
∂x(k) , δx

〉
d t, (D.1.11b)

where in (D.1.11b) we exploit the fact that the summation set is finite and the integral
converges.

We now recall that Hamilton’s principle has to valid for all possible variations,
consequently δG = 0 implies that

m∑
k=0

(−1)k dk

d tk
∂L
∂x(k) = 0. (D.1.12)

To conclude, a trajectory x(t) is a stationary point of the action functional (D.1.1) if
and only if it is a solution of the partial differential equation (D.1.12).

Optimal Trajectory Planning in Rn 258

D.2 Minimum acceleration trajectory in Rn

Given a set of points, also denoted as knots, associated to a scalar parameter t
representing the time, i.e., (t0, x0), (t1, x1), ..., (tN , xN) such that ti ≥ 0 and xi ∈ Rn

and given a desired initial and final velocity, (t0, ẋ0) and (tN , ẋN). We aim to compute a
trajectory x : R+ → Rn passing to knots having the desired initial and final velocity such
that the second order derivative of x(t) with respect to the time, i.e., the acceleration,
is minimized.

More formally, we seek for a trajectory x∗(t) such that is a stationary point of the
action (D.1.1) with a Lagrangian function defined as

L(ẍ) = ẍ⊤ẍ. (D.2.1)

Considering the set of points {(ti, xi)} and the Lagrangian function (D.2.1), the action
functional G (D.1.1) writes as

Gẍ =
N−1∑
i=0

∫ ti+1

ti

ẍ⊤ẍ d t. (D.2.2)

Since all the terms within the sum of (D.2.2) are positive, the minimization of Gẍ is
equivalent to the minimization of each integral term in (D.2.2).

Substituting (D.2.1) into (D.1.12), we obtain

x(4)(t) = 0, (D.2.3)

we can conclude that a trajectory x(t) that satisfies (D.2.3) minimizes
∫ ti+1

ti

ẍ⊤ẍ d t, (D.2.4)

and consequently it is a minimum acceleration trajectory in the interval ti, ti+1. One
of the infinite solutions of (D.2.3) is given by the family of the 3rd-order polynomial
functions

x(t) = a3t
3 + a2t

2 + a1t+ a0. (D.2.5)

The optimal trajectory that minimizes (D.2.2) is given by the concatenation of the
3rd-order polynomial functions (D.2.5), where the coefficients ai are chosen to satisfy

Optimal Trajectory Planning in Rn 259

the boundary conditions of position and velocity

x(ti) = xi ẋ(ti) = ẋi (D.2.6a)
x(ti+1) = xi+1 ẋ(ti+1) = ẋi+1. (D.2.6b)

Given a subtrajectory

si : x(t) = ai,3(t− ti)3 + ai,2(t− ti)2 + ai,1(t− ti) + ai,0, (D.2.7)

defined in the closed domain [ti, ti+1], the coefficients ai,j are equal to:

ai,0 = xi (D.2.8a)
ai,1 = ẋi (D.2.8b)

ai,2 = −3xi − 3xi+1 + 2δiẋi + δiẋi+1

δ2
i

(D.2.8c)

ai,3 = 2xi − 2xi+1 + δiẋi + δiẋi+1

δ3
i

, (D.2.8d)

where δi = ti+1 − ti. Given a knot (ti, xi) such that i ̸= 0 and i ̸= N , we compute the
velocity ẋi by asking for continuous acceleration at the knots, i.e.,

d2

d t2 si−1

∣∣∣∣∣
t=ti

= d2

d t2 si

∣∣∣∣∣
t=ti

(D.2.9)

By substituting (D.2.8) into (D.2.7) applying the constraint (D.2.9) and imposing the
continuity at ti, we obtain the following linear equation

3xi−1 − 3xi + 2δi−1ẋi + δi−1ẋi−1

δ2
i−1

+ 3xi − 3xi+1 + 2δiẋi + δiẋi+1

δ2
i

= 0. (D.2.10)

We note that for i = 1 and i = N − 1 the terms ẋi−1 and ẋi+1 are, respectively, known.
In fact, when i = 1, ẋi−1 = ẋ0, whether i = N − 1, ẋi+1 = ẋN . By stacking Equation
(D.2.10) for all the points (ti, xi) such that i ≠ 0 and i ̸= N , we obtain a sparse linear
system which can be easily solved online.

Once the velocity of all the knots has been determined, the coefficients (D.2.8) can
be evaluated and, consequently, the minimum acceleration trajectory is completely
defined.

Optimal Trajectory Planning in Rn 260

D.3 Minimum jerk trajectory in Rn

Given a set of knots associated to the a time instant t, i.e., (t0, x0), (t1, x1), ...,
(tN , xN) such that ti ≥ 0 and xi ∈ Rn and given a desired initial and final velocity,
(t0, ẋ0), (tN , ẋN), and acceleration (t0, ẍ0), (tN , ẍN). We aim to compute a trajectory
x : R+ → Rn passing to knots satisfying the boundary conditions such that the
third-order derivative of x(t) with respect to the time, i.e., the jerk, is minimized.

Following the same approach presented in Appendix D.2 and defining the Lagrangian
function as

L(ẍ) = ...
x⊤...

x . (D.3.1)

we can conclude that a trajectory x(t) that satisfies

x(6)(t) = 0, (D.3.2)

is a minimum jerk trajectory in the interval [ti, ti+1]. One of the infinite solutions
of (D.3.2) is given by the family of the 5th-order polynomial function

x(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0. (D.3.3)

The optimal trajectory that minimizes the jerk in the interval [t0, tN] is given by
the concatenation of the 5th-order polynomial functions (D.3.3), where the coefficients
ai are chosen to satisfy the position, velocity, and acceleration boundary conditions

x(ti) = xi ẋ(ti) = ẋi ẍ(ti) = ẍi (D.3.4a)
x(ti+1) = xi+1 ẋ(ti+1) = ẋi+1 ẍ(ti+1) = ẍi+1. (D.3.4b)

Given a subtrajectory

si : x(t) = ai,5(t−ti)5+ai,4(t−ti)4+ai,3(t−ti)3+ai,2(t−ti)2+ai,1(t−ti)+ai,0, (D.3.5)

Optimal Trajectory Planning in Rn 261

defined in the closed domain [ti, ti+1], the coefficients ai,j are equal to:

ai,0 = xi (D.3.6a)
ai,1 = ẋi (D.3.6b)

ai,2 = ẍi

2 (D.3.6c)

ai,3 = −20xi − 20xi+1 + 12δiẋi + 8δiẋi+1 + 3δ2
i ẍi − δ2

i ẍi+1

2δ3
i

(D.3.6d)

ai,4 = 30xi − 30xi+1 + 16δiẋi + 14δiẋi+1 + 3δ2
i ẍi − 2δ2

i ẍi+1

2δ4
i

(D.3.6e)

ai,5 = −12xi − 12xi+1 + 6δiẋi + 6δiẋi+1 + δ2
i ẍi − δ2

i ẍi+1

2δ5
i

, (D.3.6f)

where δi = ti+1 − ti. Given a knot (ti, xi) such that i ̸= 0 and i ̸= N , we compute the
velocity ẋi and the acceleration ẍi by asking for continuous jerk and snap at the knots,
i.e.,

d3

d t3 si−1

∣∣∣∣∣
t=ti

= d3

d t3 si

∣∣∣∣∣
t=ti

,
d4

d t4 si−1

∣∣∣∣∣
t=ti

= d4

d t4 si

∣∣∣∣∣
t=ti

. (D.3.7)

By substituting (D.3.6) into (D.3.5) applying the constraint (D.3.7) and imposing the
continuity at ti, we obtain the following linear equations

8

δt2
i−1

1
δti−1

12
(

1
δt2

i−1
− 1

δt2
i

)
−3

(
1

δti−1
+ 1

δti

)
− 8

δt2
i

1
δti

14
δt3

i−1

2
δt2

i−1
16
(

1
δt3

i−1
+ 1

δt3
i

)
3
(
− 1

δt2
i−1

+ 1
δt2

i

)
14
δt3

i
− 2

δt2
i

ẋi−1

ẍi−1

ẋi

ẍi

ẋi+1

ẍi+1

=

 20(xi−xi−1)
δt3

i−1
+ 20(xi−xi+1)

δt3
i

30(xi−xi−1)
δt4

i−1
− 30(xi−xi+1)

δt4
i

 .

(D.3.8)

By stacking (D.3.8) for all points (ti, xi) such that i ̸= 0 and i ̸= N , we obtain a
sparse linear system which can be easily solved online to compute the velocity and the
acceleration at t = ti. Once the boundary conditions for each subtrajectory have been
computed, we determine the coefficients (D.3.6) for each subtrajectory. The minimum
jerk trajectory is finally given by the concatenation of all the subtrajectories si.

Appendix E

Optimal Trajectory Planning in
SO(3)

This appendix faces the problem of planning optimal trajectory in SO(3). We first
extend Hamilton’s Variational Principle presented in Appendix D.1 as a solution of
the two-point trajectory planning in SO(3), then we apply the technique to compute a
minimum acceleration trajectory in SO(3).

E.1 Hamilton’s Variational Principle in SO(3)

Given a fixed initial rotation R(t0) = R0 ∈ SO(3) and a final rotation R(tf) = Rf ∈
SO(3) we aim to compute the trajectory R(t) such that it is a stationary point of the
action functional:

G =
∫ tf

t0
L (R,ω, ω̇) d t, (E.1.1)

where L (R,ω, ω̇) is the Lagrangian function and depends on the trajectory R, on the
angular velocity ω, and on the angular acceleration ω̇. In this appendix, we assume
that the angular velocity is left trivialized, i.e. Ṙ = Rω×. The angular acceleration is
the time differentiation of the angular velocity [Traversaro, 2017, Section 2.4.2] The
optimization problem can be solved by applying Hamilton’s Variational Principle [Lee
et al., 2018, Section 6.3.1]. Similarly to Appendix D.1 we introduce the concept of
variations on SO(3).

Suppose that a curve R : [t0, tf] → SO(3) describes a trajectory in SO(3). We
now introduce the variation of the curve R(t), which is the ϵ-parameterized family of
curves Rϵ(t) taking values in SO(3), where ϵ ∈ (−c, c) with c > 0, R0(t) = R(t) and

Optimal Trajectory Planning in SO(3) 263

the endpoints are fixed, that is, Rϵ(t0) = R(t0) and Rϵ(tf) = R(tf). We describe the
variation of the rotational motion by means of the exponential map

Rϵ(t) = R(t) exp (ϵη(t)∧) . (E.1.2)

The variation of the angular velocity ωϵ is given by

ωϵ= R⊤
ϵ Ṙϵ (E.1.3a)

= exp (−ϵη∧)R⊤ d
d t [R exp (ϵη∧)] , (E.1.3b)

where, for the sake of clarity, we suppress the time dependency. The variation in
angular acceleration derives from the time differentiation of (E.1.3) as:

ω̇ϵ=
d
d t

(
R⊤

ϵ Ṙϵ

)
(E.1.4a)

= d
d t

{
exp (−ϵη∧)R⊤ d

d t [R exp (ϵη∧)]
}
. (E.1.4b)

We now determine the infinitesimal variation of (E.1.2) (E.1.3) (E.1.4). The
infinitesimal variation of R, denoted with δR, is given by

δR= d
d ϵRϵ

∣∣∣∣∣
ϵ=0

(E.1.5a)

= R
d

d ϵ exp (ϵη∧)
∣∣∣∣∣
ϵ=0

(E.1.5b)

= Rη∧ exp (ϵη∧)|ϵ=0 (E.1.5c)
= Rη∧. (E.1.5d)

The infinitesimal variation of ω, denoted with δω derives from Equation (E.1.3) as

δω= d
d ϵωϵ

∣∣∣∣∣
ϵ=0

(E.1.6a)

= d
d ϵ

(
R⊤

ϵ Ṙϵ

)∣∣∣∣∣
ϵ=0

(E.1.6b)

= d
d ϵR

⊤
ϵ Ṙϵ

∣∣∣∣∣
ϵ=0

+ R⊤
ϵ

d
d ϵṘϵ

∣∣∣∣∣
ϵ=0

. (E.1.6c)

Optimal Trajectory Planning in SO(3) 264

We now notice that Ṙϵ is given by

Ṙϵ=
d
d t (R exp (ϵη∧)) (E.1.7a)

= Rω∧ exp (ϵη∧) +R
d
d t exp (ϵη∧) (E.1.7b)

= Rω∧ exp (ϵη∧) +R
d
d t

(
I3 + ϵη∧ +O(ϵ2)

)
(E.1.7c)

= Rω∧ exp (ϵη∧) +R
(
ϵη̇∧ +O(ϵ2)

)
. (E.1.7d)

By substituting (E.1.7d) into (E.1.6) and recalling that d
d ϵ
Rϵ = Rη∧ exp (ϵη∧) (E.1.5c),

we have the following:

δω∧= d
d ϵR

⊤
ϵ Ṙϵ

∣∣∣∣∣
ϵ=0

+ R⊤
ϵ

d
d ϵṘϵ

∣∣∣∣∣
ϵ=0

(E.1.8a)

=
[
− exp (−ϵη∧) η∧R⊤

][
Rω∧ exp (ϵη∧) +R

(
ϵη̇∧ +O(ϵ2)

)]∣∣∣
ϵ=0

(E.1.8b)

+
[
exp (−ϵη∧)R⊤

] d
d ϵ

[
Rω∧ exp (ϵη∧) +R

(
ϵη̇∧ +O(ϵ2)

)]∣∣∣∣∣
ϵ=0

(E.1.8c)

=−η∧R⊤Rω∧ (E.1.8d)
+
[
exp (−ϵη∧)R⊤

]
[Rω∧η∧ exp (ϵη∧) +R (η̇∧ +O(ϵ))]

∣∣∣
ϵ=0

(E.1.8e)
=−η∧R⊤Rω∧ +R⊤[Rω∧η∧ +Rη̇∧] (E.1.8f)
=η̇∧ + ω∧η∧ − η∧ω∧. (E.1.8g)

Here, for the sake of clarity, we use the colors to simplify the reader in following the
passages. Applying the vee operator (Equation (A.3.3b)) to δω∧ (E.1.8), we obtain
the infinitesimal variation of the angular velocity

δω = η̇ + ω × η. (E.1.9)

The infinitesimal variation of the angular acceleration ω̇, denoted by δω̇, is

δω̇∧= d
d ϵω̇ϵ

∣∣∣∣∣
ϵ=0

(E.1.10a)

= d
d ϵ

d
d t

(
R⊤

ϵ Ṙϵ

)∣∣∣∣∣
ϵ=0

(E.1.10b)

= d
d ϵ

[
Ṙ⊤

ϵ Ṙϵ +R⊤
ϵ

d
d tṘϵ

]∣∣∣∣∣
ϵ=0

(E.1.10c)

= d
d ϵṘ

⊤
ϵ Ṙϵ

∣∣∣∣∣
ϵ=0

+ Ṙ⊤
ϵ

d
d ϵṘϵ

∣∣∣∣∣
ϵ=0

+ d
d ϵR

⊤
ϵ R̈ϵ

∣∣∣∣∣
ϵ=0

+ R⊤
ϵ

d
d ϵR̈ϵ

∣∣∣∣∣
ϵ=0

. (E.1.10d)

Optimal Trajectory Planning in SO(3) 265

We now notice that R̈ϵ can be written as

R̈ϵ=
d
d tṘϵ (E.1.11a)

= d
d t

(
Rω∧ exp (ϵη∧) +R

(
ϵη̇∧ +O(ϵ2)

))
(E.1.11b)

= d
d t (Rω∧ exp (ϵη∧)) + d

d t
(
R
(
ϵη̇∧ +O(ϵ2)

))
(E.1.11c)

=R(ω∧)2 exp(ϵη∧) +R(ω̇∧) exp(ϵη∧) +Rω∧
(
ϵη̇∧ +O(ϵ2)

)
(E.1.11d)

+Rω∧
(
ϵη̇∧ +O(ϵ2)

)
+R

(
ϵη̈∧ +O(ϵ2)

)
(E.1.11e)

=R
[(
ω̇∧ + (ω∧)2) exp(ϵη∧) + 2ϵω∧η̇∧ + ϵη̈∧ +O(ϵ2)

]
. (E.1.11f)

By substituting (E.1.11f) into (E.1.10), recalling that d
d ϵ
Rϵ = Rη∧ exp (ϵη∧) (E.1.5c),

and d
d ϵ
Ṙϵ = R [ω∧η∧ exp (ϵη∧) + η̇∧ +O(ϵ)] (E.1.8e) we have:

δω̇∧= d
d ϵṘ

⊤
ϵ Ṙϵ

∣∣∣∣∣
ϵ=0

+ Ṙ⊤
ϵ

d
d ϵṘϵ

∣∣∣∣∣
ϵ=0

+ d
d ϵR

⊤
ϵ R̈ϵ

∣∣∣∣∣
ϵ=0

+ R⊤
ϵ

d
d ϵR̈ϵ

∣∣∣∣∣
ϵ=0

(E.1.12a)

=(−η̇∧ + η∧ω∧)ω∧−ω∧ (η̇∧ + η∧ω∧) (E.1.12b)
−η∧

(
ω̇∧ + (ω∧)2

)
+ ω̇∧η∧ + (ω∧)2η∧ + 2ω∧η̇∧ + η̈∧ (E.1.12c)

=η̈∧ + (ω̇∧η∧ − η∧ω̇∧) + (ω∧η̇∧ − η̇∧ω∧). (E.1.12d)

Finally, by applying the vee operator (Equation (A.3.3b)) to δω̇∧ (E.1.12), we obtain
the infinitesimal variation of the angular acceleration

δω̇ = η̈ + ω̇ × η + ω × η̇. (E.1.13)

We now introduce the action functional along a variation of a motion Gϵ as

Gϵ =
∫ tf

t0
L (Rϵ, ωϵ, ω̇ϵ) d t, (E.1.14)

then, the first-order Taylor expansion of the Gϵ is given by

Gϵ = G + ϵδG +O
(
ϵ2
)
, (E.1.15)

where the infinitesimal variation of the action functional is given by

δG = d
d ϵGϵ

∣∣∣∣∣
ϵ=0

. (E.1.16)

Optimal Trajectory Planning in SO(3) 266

Hamilton’s principle states that the infinitesimal variation of the action integral
along any rotational motion is zero

δG = d
d ϵGϵ

∣∣∣∣∣
ϵ=0

= 0, (E.1.17)

for all possible infinitesimal variations η with fixed endpoints, i.e., η(t0) = 0 and
η(tf) = 0. To conclude, combining Hamilton’s principle (E.1.17) with the functional
(E.1.1) we have the following

δG =
∫ tf

t0

{〈
∂L
∂R

, δR

〉
+
〈
∂L
∂ω

, δω

〉
+
〈
∂L
∂ω̇

, δω̇

〉}
d t = 0, (E.1.18)

where δR, δω, and δω̇ are defined in (E.1.5), (E.1.9) and (E.1.13), respectively. Here
⟨., .⟩ is the scalar product operator.

In the next section, we apply Hamilton’s principle to design a minimum acceleration
trajectory in SO(3).

E.2 Minimum acceleration trajectory in SO(3)

Given a fixed initial rotation (t0, R0) and a final rotation (tf , Rf) and the associated
right trivialized angular velocities, (t0, ω0) and (tf , ωf), we want to compute a trajectory
R : R+ → SO(3) such that R(t0) = R0, R(tf) = Rf , ω(t0) = ω0, ω(tf) = ωf such that
right trivialized angular acceleration is minimized. More formally, we seek a trajectory
R(t) such that it is a stationary point of the action (E.1.1) with a Lagrangian function
defined as

L(ω̇) = ω̇⊤ω̇. (E.2.1)

By substituting (E.2.1) into (E.1.18) we have

δG=
∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, δω̇

〉
d t =

∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, η̈ + ω̇ × η + ω × η̇
〉

d t (E.2.2a)

=
∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, η̈

〉
d t (E.2.2b)

+
∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, ω̇ × η
〉

d t (E.2.2c)

+
∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, ω × η̇
〉

d t. (E.2.2d)

Optimal Trajectory Planning in SO(3) 267

We now analyze each term of (E.2.2) explicitly. By integrating (E.2.2b) by parts, we
obtain the following:

∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, η̈

〉
d t=

〈
∂L(ω̇)
∂ω̇

, η̇

〉∣∣∣∣∣
tf

t0

(E.2.3a)

−
〈

d
d t
∂L(ω̇)
∂ω̇

, η

〉∣∣∣∣∣
tf

t0

(E.2.3b)

+
∫ tf

t0

〈
d2

d t2
∂L(ω̇)
∂ω̇

, η

〉
d t. (E.2.3c)

Recalling the fact that the infinitesimal variations η and η̇ vanish at t0 and tf , Equa-
tion (E.2.3) can be simplified as follows:

∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, η̈

〉
d t =

∫ tf

t0

〈
d2

d t2
∂L(ω̇)
∂ω̇

, η

〉
d t. (E.2.4)

Applying the properties scalar triple product, (E.2.2c) writes as

∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, ω̇ × η
〉

d t =
∫ tf

t0

〈
∂L(ω̇)
∂ω̇

× ω̇, η
〉

d t. (E.2.5)

Similarly, we rewrite (E.2.2d) applying the properties of the scalar triple product
and integrating it by parts:

∫ tf

t0

〈
∂L(ω̇)
∂ω̇

, ω × η̇
〉

d t=
∫ tf

t0

〈
∂L(ω̇)
∂ω̇

× ω, η̇
〉

d t (E.2.6a)

=−
∫ tf

t0

〈
d
d t

(
∂L(ω̇)
∂ω̇

× ω
)
, η

〉
d t, (E.2.6b)

where in (E.2.6b), we use the fact that η(t0) = η(tf) = 0.
By substituting (E.2.4), (E.2.5) and (E.2.6b) into (E.2.2), we obtain the final

formulation of the infinitesimal variation of the action functional:

δG =
∫ tf

t0

〈
d2

d t2
∂L(ω̇)
∂ω̇

− d
d t

(
∂L(ω̇)
∂ω̇

× ω
)

+ ∂L(ω̇)
∂ω̇

× ω̇, η
〉

d t. (E.2.7)

We now recall that Hamilton’s principle must be valid for all possible variations η,
and consequently δG = 0 implies that

d2

d t2
∂L(ω̇)
∂ω̇

− d
d t

(
∂L(ω̇)
∂ω̇

× ω
)

+ ∂L(ω̇)
∂ω̇

× ω̇ = 0. (E.2.8)

Optimal Trajectory Planning in SO(3) 268

Combining the Lagrangian definition (E.2.1) with the partial differential equa-
tion (E.2.8) we obtain

...
ω + ω × ω̈ = 0. (E.2.9)

Finally, we can conclude that a trajectory R(t) that satisfies (E.2.9) is a minimum
acceleration trajectory.

It is worth noting that (E.2.9) does not admit an analytic solution for arbitrary
boundary conditions. However, in the case of zero initial and final velocity ω, it is
possible to show that

R(t) = exp
(
s(t− t0) log

(
RfR

⊤
0

))
R0 (E.2.10a)

s(τ) = 3
(tf − t0)2 τ

2 − 3
(tf − t0)3 τ

3, (E.2.10b)

satisfies condition (E.2.9). To prove the latest statement, we first compute the right
trivialized angular velocity as

ω∧= R⊤Ṙ (E.2.11a)
= ṡR⊤

0 exp
(
−s log

(
RfR

⊤
0

))
log

(
RfR

⊤
0

)
exp

(
s log

(
RfR

⊤
0

))
R0 (E.2.11b)

= ṡR⊤
0 exp

(
−s log

(
RfR

⊤
0

))
R0 log

(
R⊤

0 Rf

)
R⊤

0 exp
(
s log

(
RfR

⊤
0

))
R0 (E.2.11c)

= ṡ exp
(
−s log

(
R⊤

0 Rf

))
log

(
R⊤

0 Rf

)
exp

(
s log

(
R⊤

0 Rf

))
(E.2.11d)

= ṡ exp
(
−s log

(
R⊤

0 Rf

))
exp

(
s log

(
R⊤

0 Rf

))
log

(
R⊤

0 Rf

)
(E.2.11e)

= ṡ log
(
R⊤

0 Rf

)
. (E.2.11f)

Here, we exploit the exponential and the adjoint maps properties – Equation (A.7.1)
and Section A.6. We notice that ω satisfies the constraint (E.2.9):

...
ω + ω × ω̈= d4

d t4 sLog
(
R⊤

0 Rf

)
(E.2.12a)

+
(

d
d tsLog

(
R⊤

0 Rf

))
×
(

d3

d t3 sLog
(
R⊤

0 Rf

))
(E.2.12b)

= d4

d t4 sLog
(
R⊤

0 Rf

)
(E.2.12c)

=0. (E.2.12d)

Optimal Trajectory Planning in SO(3) 269

Furthermore, the trajectory (E.2.10) satisfies the boundary conditions: namely R(t0) =
R0, R(tf) = Rf , ω(t0) = ω(tf) = 0. To conclude, the trajectory (E.2.10) is a minimum
acceleration trajectory in the interval [t0, tf].

	Table of contents
	List of figures
	List of tables
	Prologue
	I Background & Fundamentals
	1 Introduction
	1.1 The iCub Humanoid Robot
	1.1.1 The iCub v2.7 robot
	1.1.2 The iCub v3 robot
	1.1.3 Software infrastructure

	1.2 The TALOS Humanoid Robot
	1.3 Notation

	2 Rigid Body System Modeling
	2.1 The Rotation group
	2.1.1 Angular velocity
	2.1.2 Exponential and Logarithmic map
	2.1.3 The adjoint representation

	2.2 The Euclidean group
	2.2.1 6D spatial velocity
	2.2.2 6D spatial force
	2.2.3 Exponential and Logarithmic map
	2.2.4 The adjoint representation
	2.2.5 The co-adjoint representation
	2.2.6 The adjoint representation of se(3)
	2.2.7 The co-adjoint representation of se(3)
	2.2.8 Mixed spatial velocity
	2.2.9 Mixed spatial force

	2.3 Rigid body dynamics
	2.4 The rotation and euclidean groups: a Lie groups prospective

	3 Modeling of Floating Base Multi-Body Systems
	3.1 Floating base multi-body system modeling
	3.2 Multi-body kinematics
	3.3 Multi-body dynamics
	3.4 Centroidal dynamics

	4 Simplified Models for Locomotion
	4.1 The linear inverted pendulum
	4.2 The zero moment point
	4.2.1 Connection between the ZMP and the centroidal momentum dynamics

	4.3 The centroidal moment pivot
	4.4 The divergent component of motion
	4.4.1 Connection between the DCM and the LIPM

	4.5 The time-varying DCM

	5 Optimal Control and Non-Linear Optimization Basics
	5.1 Convex set
	5.1.1 Affine and convex sets
	5.1.2 Convex set examples

	5.2 Convex function
	5.2.1 First and second order conditions for the convexity

	5.3 Optimization problem
	5.3.1 The optimality conditions for unconstrained problems
	5.3.2 Lagrange duality theory
	5.3.3 Karush-Kuhn-Tucker Conditions

	5.4 Quadratic Programming
	5.5 Optimal control
	5.5.1 Direct methods
	5.5.2 Shooting methods

	5.6 Model predictive control

	6 State of the Art and Thesis Context
	6.1 State of the Art
	6.1.1 Trajectory optimization layer
	6.1.2 Simplified model control layer
	6.1.3 Whole-Body control layer

	6.2 Thesis Context
	6.2.1 Part II: Whole-Body Controllers
	6.2.2 Part III: From Simplified to Reduced Models Controllers

	II Whole-Body Controllers
	7 Benchmarking of Whole-Body Controllers for Locomotion on Rigid Environment
	7.1 Kinematics based whole-body QP control layer
	7.1.1 Low and high priority tasks
	7.1.2 Quadratic programming problem
	7.1.3 Position and velocity controlled robot

	7.2 Dynamics-based whole-body QP control layer
	7.2.1 Low and high priority tasks
	7.2.2 Quadratic programming problem

	7.3 Experimental results
	7.3.1 Tracking performances
	7.3.2 Energy consumption

	7.4 Conclusion

	8 Whole-Body Controller on Visco Elastic Environment
	8.1 Modeling of visco-elastic environments
	8.1.1 Linear approximation of the visco-elastic model

	8.2 Whole-body controller
	8.2.1 Low and high priority tasks
	8.2.2 Quadratic programming problem
	8.2.3 Contact parameters estimation

	8.3 Results
	8.3.1 Comparison between TSID-Compliant and TSID-Rigid
	8.3.2 Robustness of the TSID-Compliant
	8.3.3 Anisotropic environment

	8.4 Conclusions

	9 Whole-Body Control of Humanoid Robots with Link Flexibility
	9.1 System modeling
	9.1.1 Model of the hip flexibility
	9.1.2 Modeling of a floating base system with flexible joints

	9.2 Whole-body Controller
	9.2.1 Low and high priority tasks
	9.2.2 Quadratic programming problem

	9.3 Flexible Joint State Observer
	9.3.1 Forward kinematics
	9.3.2 Inverse dynamics propagation
	9.3.3 Flexible joint state estimation

	9.4 Results
	9.4.1 Comparison between TSID-Flex and TSID-Rigid
	9.4.2 Performances of the TSID-Flex in the case of different stiffness parameters

	9.5 Conclusions

	III From Simplified to Reduced Models Controllers
	10 Benchmarking of Simplified-Model Controllers for Locomotion
	10.1 Background
	10.1.1 The unicycle model
	10.1.2 Footsteps trajectory planner
	10.1.3 DCM trajectory generator

	10.2 Simplified model architecture
	10.2.1 The DCM trajectory planner
	10.2.2 Swing Foot Trajectory
	10.2.3 Simplified model control layer

	10.3 Results
	10.3.1 Experiment 1: a forward robot speed of 0.1563 m s-1
	10.3.2 Experiment 2: a forward robot speed of 0.3372 m s-1

	10.4 Conclusions

	11 Non-Linear Centroidal Model Predictive Controller
	11.1 Centroidal model predictive controller
	11.1.1 Prediction model
	11.1.2 Objective function
	11.1.3 Inequality constraints
	11.1.4 MPC formulation

	11.2 Results
	11.2.1 Reduced models simulation
	11.2.2 Test on the iCub Humanoid Robot

	11.3 Conclusions

	Epilogue
	References
	Appendix A Lie Group: a Survival Kit
	A.1 Matrix Lie Group
	A.2 Action of a Lie Group
	A.3 Tangent space and Lie algebra
	A.4 Co-tangent space and Lie co-algebra
	A.5 Left and right trivialization
	A.6 Exponential and logarithmic map
	A.7 The adjoint and the co-adjoint representation of a Lie group
	A.8 The adjoint and the co-adjoint representation of the Lie algebra
	A.9 Eurel-Poincaré equations

	Appendix B Proof of Lemma 1
	B.1 Compliant contact force computation
	B.2 Compliant contact torque computation

	Appendix C Proof of Corollary 1
	Appendix D Optimal Trajectory Planning in Rn
	D.1 Notes on Hamilton's Variational Principle
	D.2 Minimum acceleration trajectory in Rn
	D.3 Minimum jerk trajectory in Rn

	Appendix E Optimal Trajectory Planning in SO(3)
	E.1 Hamilton's Variational Principle in SO(3)
	E.2 Minimum acceleration trajectory in SO(3)

